cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A029549 a(n + 3) = 35*a(n + 2) - 35*a(n + 1) + a(n), with a(0) = 0, a(1) = 6, a(2) = 210.

Original entry on oeis.org

0, 6, 210, 7140, 242556, 8239770, 279909630, 9508687656, 323015470680, 10973017315470, 372759573255306, 12662852473364940, 430164224521152660, 14612920781245825506, 496409142337836914550, 16863297918705209269200, 572855720093639278238256
Offset: 0

Views

Author

Keywords

Comments

Triangular numbers that are twice other triangular numbers. - Don N. Page
Triangular numbers that are also pronic numbers. These will be shown to have a Pythagorean connection in a paper in preparation. - Stuart M. Ellerstein (ellerstein(AT)aol.com), Mar 09 2002
In other words, triangular numbers which are products of two consecutive numbers. E.g., a(2) = 210: 210 is a triangular number which is the product of two consecutive numbers: 14 * 15. - Shyam Sunder Gupta, Oct 26 2002
Coefficients of the series giving the best rational approximations to sqrt(8). The partial sums of the series 3 - 1/a(1) - 1/a(2) - 1/a(3) - ... give the best rational approximations to sqrt(8) = 2 sqrt(2), which constitute every second convergent of the continued fraction. The corresponding continued fractions are [2; 1, 4, 1], [2; 1, 4, 1, 4, 1], [2; 1, 4, 1, 4, 1, 4, 1], [2; 1, 4, 1, 4, 1, 4, 1, 4, 1] and so forth. - Gene Ward Smith, Sep 30 2006
This sequence satisfy the same recurrence as A165518. - Ant King, Dec 13 2010
Intersection of A000217 and A002378.
This is the sequence of areas, x(n)*y(n)/2, of the ordered Pythagorean triples (x(n), y(n) = x(n) + 1,z(n)) with x(0) = 0, y(0) = 1, z(0) = 1, a(0) = 0 and x(1) = 3, y(1) = 4, z(1) = 5, a(1) = 6. - George F. Johnson, Aug 20 2012

Crossrefs

Programs

  • GAP
    List([0..20], n-> (Lucas(2,-1, 4*n+2)[2] -6)/32 ); # G. C. Greubel, Jan 13 2020
  • Haskell
    a029549 n = a029549_list !! n
    a029549_list = [0,6,210] ++
       zipWith (+) a029549_list
                   (map (* 35) $ tail delta)
       where delta = zipWith (-) (tail a029549_list) a029549_list
    -- Reinhard Zumkeller, Sep 19 2011
    
  • Macsyma
    (makelist(binom(n,2),n,1,999999),intersection(%%,2*%%)) /* Bill Gosper, Feb 07 2010 */
    
  • Magma
    R:=PowerSeriesRing(Integers(), 25); [0] cat Coefficients(R!(6/(1-35*x+35*x^2-x^3))); // G. C. Greubel, Jul 15 2018
    
  • Maple
    A029549 := proc(n)
        option remember;
        if n <= 1 then
            op(n+1,[0,6]) ;
        else
            34*procname(n-1)-procname(n-2)+6 ;
        end if;
    end proc: # R. J. Mathar, Feb 05 2016
  • Mathematica
    Table[Floor[(Sqrt[2] + 1)^(4n + 2)/32], {n, 0, 20} ] (* Original program from author, corrected by Ray Chandler, Jul 09 2015 *)
    CoefficientList[Series[6/(1 - 35x + 35x^2 - x^3), {x, 0, 14}], x]
    Intersection[#, 2#] &@ Table[Binomial[n, 2], {n, 999999}] (* Bill Gosper, Feb 07 2010 *)
    LinearRecurrence[{35, -35, 1}, {0, 6, 210}, 20] (* Harvey P. Dale, Jun 06 2011 *)
    (LucasL[4Range[20] - 2, 2] -6)/32 (* G. C. Greubel, Jan 13 2020 *)
  • PARI
    concat(0,Vec(6/(1-35*x+35*x^2-x^3)+O(x^25))) \\ Charles R Greathouse IV, Jun 13 2013
    
  • Sage
    [(lucas_number2(4*n+2, 2, -1) -6)/32 for n in (0..20)] # G. C. Greubel, Jan 13 2020
    
  • Scala
    val triNums = (0 to 39999).map(n => (n * n + n)/2)
    triNums.filter( % 2 == 0).filter(n => (triNums.contains(n/2))) // _Alonso del Arte, Jan 12 2020
    

Formula

G.f.: 6*x/(1 - 35*x + 35*x^2 - x^3) = 6*x /( (1-x)*(1 - 34*x + x^2) ).
a(n) = 6*A029546(n-1) = 2*A075528(n).
a(n) = -3/16 + ((3+2*sqrt(2))/32) *(17 + 12*sqrt(2))^n + ((3-2*sqrt(2))/32) *(17 - 12*sqrt(2))^n. - Gene Ward Smith, Sep 30 2006
From Bill Gosper, Feb 07 2010: (Start)
a(n) = (cosh((4*n + 2)*log(1 + sqrt(2))) - 3)/16.
a(n) = binomial(A001652(n) + 1, 2) = 2*binomial(A053141(n) + 1, 2). (End)
a(n) = binomial(A046090(n), 2) = A000217(A001652(n)). - Mitch Harris, Apr 19 2007, R. J. Mathar, Jun 26 2009
a(n) = ceiling((3 + 2*sqrt(2))^(2n + 1) - 6)/32 = floor((1/32) (1+sqrt(2))^(4n+2)). - Ant King, Dec 13 2010
Sum_{n >= 1} 1/a(n) = 3 - 2*sqrt(2) = A157259 - 4. - Ant King, Dec 13 2010
a(n) = a(n - 1) + A001109(2n). - Charlie Marion, Feb 10 2011
a(n+2) = 34*a(n + 1) - a(n) + 6. - Charlie Marion, Feb 11 2011
From George F. Johnson, Aug 20 2012: (Start)
a(n) = ((3 + 2*sqrt(2))^(2*n + 1) + (3 - 2*sqrt(2))^(2*n + 1) - 6)/32.
8*a(n) + 1 = (A002315(n))^2, 4*a(n) + 1 = (A000129(2*n + 1))^2, 32*a(n)^2 + 12*a(n) + 1 are perfect squares.
a(n + 1) = 17*a(n) + 3 + 3*sqrt((8*a(n) + 1)*(4*a(n) + 1)).
a(n - 1) = 17*a(n) + 3 - 3*sqrt((8*a(n) + 1)*(4*a(n) + 1)).
a(n - 1)*a(n + 1) = a(n)*(a(n) - 6), a(n) = A096979(2*n).
a(n) = (1/2)*A084159(n)*A046729(n) = (1/2)*A001652(n)*A046090(n).
Limit_{n->infinity} a(n)/a(n - 1) = 17 + 12*sqrt(2).
Limit_{n->infinity} a(n)/a(n - 2) = (17 + 12*sqrt(2))^2 = 577 + 408*sqrt(2).
Limit_{n->infinity} a(n)/a(n - r) = (17 + 12*sqrt(2))^r.
Limit_{n->infinity} a(n - r)/a(n) = (17 + 12*sqrt(2))^(-r) = (17 - 12*sqrt(2))^r. (End)
a(n) = 3 * T( b(n) ) + (2*b(n) + 1)*sqrt( T( b(n) ) ) where b(n) = A001108(n) (indices of the square triangular numbers), T(n) = A000217(n) (the n-th triangular number). - Dimitri Papadopoulos, Jul 07 2017
a(n) = (Pell(2*n + 1)^2 - 1)/4 = (Q(4*n + 2) - 6)/32, where Q(n) are the Pell-Lucas numbers (A002203). - G. C. Greubel, Jan 13 2020
a(n) = A002378(A011900(n)-1) = A002378(A053141(n)). - Pontus von Brömssen, Sep 11 2024

Extensions

Additional comments from Christian G. Bower, Sep 19 2002; T. D. Noe, Nov 07 2006; and others
Edited by N. J. A. Sloane, Apr 18 2007, following suggestions from Andrew S. Plewe and Tanya Khovanova

A123480 Coefficients of the series giving the best rational approximations to sqrt(3).

Original entry on oeis.org

4, 60, 840, 11704, 163020, 2270580, 31625104, 440480880, 6135107220, 85451020204, 1190179175640, 16577057438760, 230888624967004, 3215863692099300, 44791203064423200, 623860979209825504, 8689262505873133860, 121025814103014048540, 1685672134936323545704
Offset: 1

Views

Author

Gene Ward Smith, Sep 28 2006

Keywords

Comments

The partial sums of the series 2 - 1/a(1) - 1/a(2) - 1/a(3) - ... give the best rational approximations to sqrt(3), which constitute every second convergent of the continued fraction. The corresponding continued fractions are [1;1,2,1], [1;1,2,1,2,1], [1;1,2,1,2,1,2,1], [1;1,2,1,2,1,2,1,2,1] and so forth.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-4*x/((x - 1)*(x^2 - 14*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 13 2017 *)
  • PARI
    my(x='x+O('x^50)); Vec(-4*x/((x-1)*(x^2-14*x+1))) \\ G. C. Greubel, Oct 13 2017

Formula

a(n+3) = 15*a(n+2) - 15*a(n+1) + a(n).
a(n) = -1/3 + (1/6 + 1/12*3^(1/2))*(7 + 4*3^(1/2))^n + (1/6 - 1/12*3^(1/2))*(7 - 4*3^(1/2))^n.
a(n) = 4*A076139(n) = 2*A217855(n) = 1/2*A045899(n) = 4/3*A076140(n). - Peter Bala, Dec 31 2012
G.f.: -4*x/((x-1)*(x^2-14*x+1)). - Colin Barker, Jan 20 2013
a(n) = A001353(n)*A001353(n+1). - Antonio Alberto Olivares, Apr 06 2020

A123479 Coefficients of series giving the best rational approximations to sqrt(6).

Original entry on oeis.org

20, 1980, 194040, 19013960, 1863174060, 182572043940, 17890197132080, 1753056746899920, 171781670999060100, 16832850701160989900, 1649447587042777950120, 161629030679491078121880, 15837995559003082877994140, 1551961935751622630965303860
Offset: 1

Views

Author

Gene Ward Smith, Sep 28 2006

Keywords

Comments

The partial sums of the series 5/2 - 1/a(1) - 1/a(2) - 1/a(3) - ... give the best rational approximations to sqrt(6), which constitute every second convergent of the continued fraction. The corresponding continued fractions are [2;2], [2;2,4,2], [2;2,4,2,4,2], [2;2,4,2,4,2,4,2] and so forth.
Sequence of numbers x=a(n) such 4*x+1 and 6*x+1 are both square, and their square roots are A138288(n) and A054320(n). - Paul Cleary, Jun 23 2014

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{99,-99,1},{0,20,1980},{2, 25}] (* Paul Cleary, Jun 23 2014 *)
  • PARI
    Vec(-20*x/((x-1)*(x^2-98*x+1)) + O(x^100)) \\ Colin Barker, Jun 23 2014

Formula

a(n+3) = 99*a(n+2) - 99*a(n+1) + a(n).
a(n) = -5/24 + (( + 2*6^(1/2))/48)*(49 + 20*6^(1/2))^n + ((5 - 2*6^(1/2))/48)*(49 - 20*6^(1/2))^n.
G.f.: -20*x / ((x-1)*(x^2-98*x+1)). - Colin Barker, Jun 23 2014

Extensions

More terms from Colin Barker, Jun 23 2014

A123478 Coefficients of series giving the best rational approximations to sqrt(7).

Original entry on oeis.org

48, 12240, 3108960, 789663648, 200571457680, 50944360587120, 12939667017670848, 3286624478127808320, 834789677777445642480, 212033291530993065381648, 53855621259194461161296160, 13679115766543862141903843040, 3474441549080881789582414836048
Offset: 1

Views

Author

Gene Ward Smith, Sep 28 2006

Keywords

Comments

The partial sums of the series 8/3 - 1/a(1) - 1/a(2) - 1/a(3) - ... give the best rational approximations to sqrt(7), which constitute every fourth convergent of the continued fraction. The corresponding continued fractions are [2;1,1,1], [2;1,1,1,4,1,1,1], [2;1,1,1,4,1,1,1,4,1,1,1] and so forth.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{255,-255,1},{48,12240,3108960},30] (* Harvey P. Dale, Nov 20 2016 *)
  • PARI
    Vec(-48*x/((x-1)*(x^2-254*x+1)) + O(x^100)) \\ Colin Barker, Jun 23 2014

Formula

a(n+3) = 255 a(n+2) - 255 a(n+1) + a(n).
a(n) = -4/21 + (2/21+1/28*7^(1/2))*(127+48*7^(1/2))^n + (2/21-1/28*7^(1/2))*(127-48*7^(1/2))^n.
G.f.: -48*x / ((x-1)*(x^2-254*x+1)). - Colin Barker, Jun 23 2014

Extensions

More terms from Colin Barker, Jun 23 2014
Showing 1-4 of 4 results.