A076715 Duplicate of A029549.
0, 6, 210, 7140, 242556, 8239770, 279909630, 9508687656, 323015470680
Offset: 1
Keywords
Formula
a(n) = Binomial(A046090(n), 2). - Mitch Harris, Apr 19 2007
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
G.f. = x + 6*x^2 + 35*x^3 + 204*x^4 + 1189*x^5 + 6930*x^6 + 40391*x^7 + ... 6 is in the sequence since 6^2 = 36 is a triangular number: 36 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8. - _Michael B. Porter_, Jul 02 2016
a:=[0,1];; for n in [3..25] do a[n]:=6*a[n-1]-a[n-2]; od; a; # Muniru A Asiru, Dec 18 2018
a001109 n = a001109_list !! n :: Integer a001109_list = 0 : 1 : zipWith (-) (map (* 6) $ tail a001109_list) a001109_list -- Reinhard Zumkeller, Dec 17 2011
[n le 2 select n-1 else 6*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jul 25 2015
a[0]:=1: a[1]:=6: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n],n=0..26); # Emeric Deutsch with (combinat):seq(fibonacci(2*n,2)/2, n=0..20); # Zerinvary Lajos, Apr 20 2008
Transpose[NestList[Flatten[{Rest[#],ListCorrelate[{-1,6},#]}]&, {0,1}, 30]][[1]] (* Harvey P. Dale, Mar 23 2011 *) CoefficientList[Series[x/(1-6x+x^2),{x,0,30}],x] (* Harvey P. Dale, Mar 23 2011 *) LinearRecurrence[{6, -1}, {0, 1}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *) a[ n_]:= ChebyshevU[n-1, 3]; (* Michael Somos, Sep 02 2012 *) Table[Fibonacci[2n, 2]/2, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *) TrigExpand@Table[Sinh[2 n ArcCsch[1]]/(2 Sqrt[2]), {n, 0, 10}] (* Federico Provvedi, Feb 01 2021 *)
{a(n) = imag((3 + quadgen(32))^n)}; /* Michael Somos, Apr 07 2003 */
{a(n) = subst( poltchebi( abs(n+1)) - 3 * poltchebi( abs(n)), x, 3) / 8}; /* Michael Somos, Apr 07 2003 */
{a(n) = polchebyshev( n-1, 2, 3)}; /* Michael Somos, Sep 02 2012 */
is(n)=ispolygonal(n^2,3) \\ Charles R Greathouse IV, Nov 03 2016
[lucas_number1(n,6,1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
[chebyshev_U(n-1,3) for n in (0..20)] # G. C. Greubel, Dec 23 2019
The first few triples are (0,1,1), (3,4,5), (20,21,29), (119,120,169), ...
a:=[0,3];; for n in [3..25] do a[n]:=6*a[n-1]-a[n-2]+2; od; a; # Muniru A Asiru, Dec 08 2018
a001652 n = a001652_list !! n a001652_list = 0 : 3 : map (+ 2) (zipWith (-) (map (* 6) (tail a001652_list)) a001652_list) -- Reinhard Zumkeller, Jan 10 2012
Z:=PolynomialRing(Integers()); N :=NumberField(x^2-2); S:=[ (-2+(r2+1)*(3+2*r2)^n-(r2-1)*(3-2*r2)^n)/4: n in [1..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Feb 17 2009
m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(3-x)/((1-6*x+x^2)*(1-x)))); // G. C. Greubel, Jul 15 2018
A001652 := proc(n) option remember; if n <= 1 then op(n+1,[0,3]) ; else 6*procname(n-1)-procname(n-2)+2 ; end if; end proc: # R. J. Mathar, Feb 05 2016
LinearRecurrence[{7,-7,1}, {0,3,20}, 30] (* Harvey P. Dale, Aug 19 2011 *) With[{c=3+2*Sqrt[2]},NestList[Floor[c*#]+3&,3,30]] (* Harvey P. Dale, Oct 22 2012 *) CoefficientList[Series[x (3 - x)/((1 - 6 x + x^2) (1 - x)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 21 2014 *) Table[(LucasL[2*n + 1, 2] - 2)/4, {n, 0, 30}] (* G. C. Greubel, Jul 15 2018 *)
{a(n) = subst( poltchebi(n+1) - poltchebi(n) - 2, x, 3) / 4}; /* Michael Somos, Aug 11 2006 */
concat(0, Vec(x*(3-x)/((1-6*x+x^2)*(1-x)) + O(x^50))) \\ Altug Alkan, Nov 08 2015
{a=1+sqrt(2); b=1-sqrt(2); Q(n) = a^n + b^n}; for(n=0, 30, print1(round((Q(2*n+1) - 2)/4), ", ")) \\ G. C. Greubel, Jul 15 2018
(x*(3-x)/((1-6*x+x^2)*(1-x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Mar 08 2019
a053141 n = a053141_list !! n a053141_list = 0 : 2 : map (+ 2) (zipWith (-) (map (* 6) (tail a053141_list)) a053141_list) -- Reinhard Zumkeller, Jan 10 2012
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!(2*x/((1-x)*(1-6*x+x^2)))); // G. C. Greubel, Jul 15 2018
A053141 := proc(n) option remember; if n <= 1 then op(n+1,[0,2]) ; else 6*procname(n-1)-procname(n-2)+2 ; end if; end proc: # R. J. Mathar, Feb 05 2016
Join[{a=0,b=1}, Table[c=6*b-a+1; a=b; b=c, {n,60}]]*2 (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *) a[n_] := Floor[1/8*(2+Sqrt[2])*(3+2*Sqrt[2])^n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 28 2013 *) Table[(Fibonacci[2n + 1, 2] - 1)/2, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
concat(0,Vec(2/(1-x)/(1-6*x+x^2)+O(x^30))) \\ Charles R Greathouse IV, May 14 2012
{x=1+sqrt(2); y=1-sqrt(2); P(n) = (x^n - y^n)/(x-y)}; a(n) = round((P(2*n+1) - 1)/2); for(n=0, 30, print1(a(n), ", ")) \\ G. C. Greubel, Jul 15 2018
[(lucas_number1(2*n+1, 2, -1)-1)/2 for n in range(30)] # G. C. Greubel, Apr 27 2020
For n=4: a(4)=697; b(4)=493; 2*binomial(493,2)=485112=binomial(697,2). - _Paul Weisenhorn_, Aug 03 2010
a046090 n = a046090_list !! n a046090_list = 1 : 4 : map (subtract 2) (zipWith (-) (map (* 6) (tail a046090_list)) a046090_list) -- Reinhard Zumkeller, Jan 10 2012
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-3*x)/((1-6*x+x^2)*(1-x)))); // G. C. Greubel, Jul 15 2018
Digits:=100: seq(round((1+(7+5*sqrt(2))*(3+2*sqrt(2))^(n-1))/2)/2, n=0..20); # Paul Weisenhorn, Aug 03 2010
Join[{1},#+1&/@With[{c=3+2Sqrt[2]},NestList[Floor[c #]+3&,3,20]]] (* Harvey P. Dale, Aug 19 2011 *) LinearRecurrence[{7,-7,1},{1,4,21},25] (* Harvey P. Dale, Apr 13 2012 *) a[n_] := (2-ChebyshevT[n, 3]+ChebyshevT[n+1, 3])/4; Array[a, 21, 0] (* Jean-François Alcover, Jul 10 2016, adapted from PARI *)
a(n)=(2-subst(poltchebi(abs(n))-poltchebi(abs(n+1)),x,3))/4
x='x+O('x^30); Vec((1-3*x)/((1-6*x+x^2)*(1-x))) \\ G. C. Greubel, Jul 15 2018
CoefficientList[ Series[ 3x/(1 - 35 x + 35 x^2 - x^3), {x, 0, 15}], x] (* Robert G. Wilson v, Jun 24 2011 *)
concat(0, Vec(3*x/((1-x)*(1-34*x+x^2)) + O(x^20))) \\ Colin Barker, Jun 18 2015
G.f. = 1 + 3*x + 15x^2 + 85*x^3 + 493*x^4 + 2871*x^5 + 16731*x^6 + ... - _Michael Somos_, Feb 23 2019
I:=[1,3]; [n le 2 select I[n] else 6*Self(n-1) - Self(n-2) - 2: n in [1..40]]; // Vincenzo Librandi, Dec 05 2015
f:= gfun:-rectoproc({a(n)=6*a(n-1)-a(n-2)-2,a(0)=1,a(1)=3},a(n),remember): seq(f(n),n=0..40); # Robert Israel, Dec 16 2015
a[0] = 1; a[1] = 3; a[n_]:= a[n]= 6 a[n-1] -a[n-2] -2; Table[a@ n, {n,0,40}] (* Michael De Vlieger, Dec 05 2015 *) Table[(Fibonacci[2n + 1, 2] + 1)/2, {n, 0, 40}] (* Vladimir Reshetnikov, Sep 16 2016 *) LinearRecurrence[{7,-7,1},{1,3,15},40] (* Harvey P. Dale, Feb 16 2017 *) a[ n_] := (4 + ChebyshevT[n, 3] + ChebyshevT[n + 1, 3])/8; (* Michael Somos, Feb 23 2019 *)
Vec((1-4*x+x^2)/((1-x)*(1-6*x+x^2)) + O(x^50)) \\ Altug Alkan, Dec 06 2015
[(1+lucas_number1(2*n+1,2,-1))//2 for n in range(41)] # G. C. Greubel, Oct 17 2024
[1,0,1]*[1,2,2; 2,1,2; 2,2,3]^0 gives (degenerate) primitive Pythagorean triple [1, 0, 1], so a(0) = 0. [1,0,1]*[1,2,2; 2,1,2; 2,2,3]^7 gives primitive Pythagorean triple [137903, 137904, 195025] so a(7) = 137904. G.f. = 4*x + 20*x^2 + 120*x^3 + 696*x^4 + 4060*x^5 + 23660*x^6 + ...
[4*Floor(((Sqrt(2)+1)^(2*n+1)-(Sqrt(2)-1)^(2*n+1)-2*(-1)^n) / 16): n in [0..30]]; // Vincenzo Librandi, Jul 29 2019
LinearRecurrence[{5,5,-1}, {0,4,20}, 25] (* Vincenzo Librandi, Jul 29 2019 *)
a(n)=n%2+(real((1+quadgen(8))^(2*n+1))-1)/2
a(n)=if(n<0,-a(-1-n),polcoeff(4*x/(1+x)/(1-6*x+x^2)+x*O(x^n),n))
[(lucas_number2(2*n+1,2,-1) -2*(-1)^n)/4 for n in range(41)] # G. C. Greubel, Feb 11 2023
a:=[0,24];; for n in [3..20] do a[n]:=34*a[n-1]-a[n-2]+24; od; a; # G. C. Greubel, Jan 13 2020
I:=[0,24]; [n le 2 select I[n] else 34*Self(n-1) - Self(n-2) + 24: n in [1..20]]; // Marius A. Burtea, Sep 15 2019
seq(coeff(series(24*x^2/((1-x)*(1-34*x+x^2)), x, n+1), x, n), n = 1..20); # G. C. Greubel, Jan 13 2020
RecurrenceTable[{a[1]==0, a[2]==24, a[n]==34a[n-1] -a[n-2] +24}, a[n], {n,20}] Drop[CoefficientList[Series[24*x^2/((1-x)*(1-34*x+x^2)), {x,0,20}], x], 1] (* Indranil Ghosh, Mar 15 2017 *) Table[3*(ChebyshevT[n, 17] -16*ChebyshevU[n-1, 17] -1)/4, {n,20}] (* G. C. Greubel, Jan 13 2020 *)
concat(0, Vec(24*x^2/((1-x)*(1-34*x+x^2)) + O(x^20))) \\ Colin Barker, Nov 21 2016
def A078522_list(prec): P.= PowerSeriesRing(ZZ, prec) return P( 24*x^2/((1-x)*(1-34*x+x^2)) ).list() a=A078522_list(20); a[1:] # G. C. Greubel, Jan 13 2020
I:=[0,1,21,120,2080]; [n le 5 select I[n] else Self(n-1)+98*Self(n-2)-98*Self(n-3)-Self(n-4)+Self(n-5): n in [1..20]];
LinearRecurrence[{1, 98, -98, -1, 1}, {0, 1, 21, 120, 2080}, 20] (* or *) CoefficientList[Series[x (1 + 20 x + x^2)/((1 - x) (1 - 10 x + x^2) (1 + 10 x + x^2)), {x, 0, 20}], x]
a[1]:0$ a[2]:1$ a[3]:21$ a[4]:120$ a[5]:2080$ a[n]:=a[n-1]+98*a[n-2]-98*a[n-3]-a[n-4]+a[n-5]$ makelist(a[n], n, 1, 20);
a=vector(20); a[1]=0; a[2]=1; a[3]=21; a[4]=120; a[5]=2080; for(i=6, #a, a[i]=a[i-1]+98*a[i-2]-98*a[i-3]-a[i-4]+a[i-5]); a
Comments