cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A327248 Squarefree part of A078522(n+1).

Original entry on oeis.org

6, 210, 1785, 60639, 915530, 184030, 14066106, 80753867670, 10973017315470, 372759573255306, 351745902037915, 11949006236698685, 86466986871277074, 122261486084598, 43869141307765893, 35803482505852454889891, 2162247909473892250092390, 73452778286546376583337010
Offset: 1

Views

Author

Tomohiro Yamada, Sep 15 2019

Keywords

Comments

Also the squarefree part of (A001653(n+1)^2-1)/2 or of A002315(n)^2-1
Walsh shows that the system of simultaneous Pell equations x^2 - d*y^2 = z^2 - 2*d*y^2 = 1 has solutions in positive integers x, y, z if and only if d belongs to this sequence and, under the abc conjecture, this sequences grows exponentially.

Examples

			a(2) = 210 since A078522(3) = 840 = 210 * 2^2.
		

Crossrefs

Programs

  • PARI
    a(n)={local(z=1+quadgen(8)); core(imag(z^(2*n+1))^2-1)}

Formula

a(n) = A007913(A078522(n+1)).

Extensions

Missing a(11) inserted and more terms from Georg Fischer, Mar 02 2023

A046176 Indices of square numbers that are also hexagonal.

Original entry on oeis.org

1, 35, 1189, 40391, 1372105, 46611179, 1583407981, 53789260175, 1827251437969, 62072759630771, 2108646576008245, 71631910824649559, 2433376321462076761, 82663163018885960315, 2808114166320660573949
Offset: 1

Views

Author

Keywords

Comments

Bisection (even part) of Chebyshev sequence with Diophantine property.
(3*b(n))^2 - 2*(2*a(n+1))^2 = 1 with companion sequence b(n) = A077420(n), n >= 0.
Sequence also refers to inradius of primitive Pythagorean triangles with consecutive legs, odd followed by even. - Lekraj Beedassy, Apr 23 2003
As n increases, this sequence is approximately geometric with common ratio r = lim_{n -> oo} a(n)/a(n-1) = (1 + sqrt(2))^4 = 17 + 12*sqrt(2). - Ant King, Nov 08 2011
Integers of the form sqrt((m+1)*(2*m+1)). The corresponding values of m form A078522. Subsequence of A284876. - Jonathan Sondow, Apr 07 2017

References

  • M. Rignaux, Query 2175, L'Intermédiaire des Mathématiciens, 24 (1917), 80.

Crossrefs

Cf. A001109, A001110 (partial sums).

Programs

  • GAP
    List([0..20], n-> Lucas(2,-1, 4*n-2)[1]/2 ); # G. C. Greubel, Jan 13 2020
  • Magma
    I:=[1,35]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 22 2011
    
  • Maple
    seq( simplify(ChebyshevU(2*(n-1), 3)), n = 1..20); # G. C. Greubel, Jan 13 2020
  • Mathematica
    LinearRecurrence[{34, -1}, {1, 35}, 15] (* Ant King, Nov 08 2011 *)
    Fibonacci[4*Range[20] -2, 2]/2 (* G. C. Greubel, Jan 13 2020 *)
  • PARI
    vector(21, n, polchebyshev(2*(n-1), 2, 3) ) \\ G. C. Greubel, Jan 13 2020
    
  • Sage
    [lucas_number1(4*n-2, 2,-1)/2 for n in (1..20)] # G. C. Greubel, Jan 13 2020
    

Formula

a(n) = 34*a(n-1) - a(n-2); a(0)=-1, a(1)=1.
a(n+1) = S(2*n, 6) = S(n, 34) + S(n-1, 34), n >= 1, with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind. See A049310. S(n, 34) = A029547(n).
G.f.: x*(1+x)/(1-34*x+x^2).
a(n+1) = Sum_{k=0..n} (-1)^k*binomial(2*n-k, k)*6^(2*(n-k)), n >= 0.
a(n) = A001109(2n+1). - Lekraj Beedassy, Apr 23 2003
Define f(x,s) = s*x + sqrt((s^2-1)*x^2+1); f(0,s)=0. a(n) = f(f(a(n-1),3),3). - Marcos Carreira, Dec 27 2006
From Antonio Alberto Olivares, Mar 22 2008: (Start)
a(n) = (sqrt(2)/8)*(3 + 2*sqrt(2))*(17 + 12*sqrt(2))^(n-1) - (sqrt(2)/8)*(3 - 2*sqrt(2))*(17 - 12*sqrt(2))^(n-1).
a(n) = (sqrt(2)/8)*( (17+12*sqrt(2))^(n-1/2) - (17-12*sqrt(2))^(n-1/2) ).
a(n) = (sqrt(2)/8)*( (3+2*sqrt(2))^(2n-1) - (3-2*sqrt(2))^(2n-1) ).
a(n) = (sqrt(2)/8)*( (1+sqrt(2))^(4n-2) - (1-sqrt(2))^(4n-2) ).
a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3). (End)
a(n+1) = 17*a(n) + 6*sqrt(8*a(n)^2+1) for n >= 0. - Richard Choulet, May 01 2009
a(n) = b such that (-1)^(n+1) * Integral_{x=-Pi/2..Pi/2} cos((2*n-1)*x)/(3-sin(x)) dx = c + b*log(2). - Francesco Daddi, Aug 01 2011
a(n) are the nonzero integer square roots of A227970. - Richard R. Forberg, Aug 01 2013
a(n) = y/5, where y are solutions to: y^2 = 2x^2 - x - 3. - Richard R. Forberg, Nov 24 2013
a(n) = sqrt((A078522(n)+1)*(2*A078522(n)+1)). - Jonathan Sondow, Apr 07 2017
a(n) = Pell(4*n-2)/2. - G. C. Greubel, Jan 13 2020
a(n) = A001653(n)*A002315(n). - Gerry Martens, Mar 23 2024

Extensions

Chebyshev comments from Wolfdieter Lang, Nov 29 2002

A008844 Squares of sequence A001653: y^2 such that x^2 - 2*y^2 = -1 for some x.

Original entry on oeis.org

1, 25, 841, 28561, 970225, 32959081, 1119638521, 38034750625, 1292061882721, 43892069261881, 1491038293021225, 50651409893459761, 1720656898084610641, 58451683124983302025, 1985636569351347658201, 67453191674820837076801, 2291422880374557112953025
Offset: 0

Views

Author

Keywords

Comments

Numbers simultaneously square and centered square. E.g., a(1)=25 because 25 is the fourth centered square number and the fifth square number. - Steven Schlicker, Apr 24 2007
Solutions to A007913(x)=A007913(2x-1). - Benoit Cloitre, Apr 07 2002
From Ant King, Nov 09 2011: (Start)
Indices of positive hexagonal numbers that are also perfect squares.
As n increases, this sequence is approximately geometric with common ratio r = lim_{n -> infinity} a(n)/a(n-1) = (1 + sqrt(2))^4 = 17 + 12 * sqrt(2).
(End)
Also indices of hexagonal numbers (A000384) which are also centered octagonal numbers (A016754). - Colin Barker, Jan 25 2015
Also positive integers x in the solutions to 4*x^2 - 8*y^2 - 2*x + 8*y - 2 = 0, the corresponding values of y being A253826. - Colin Barker, Jan 25 2015
Squares that are sum of two consecutive squares: y^2 = (k + 1)^2 + k^2 is equivalent to x^2 - 2*y^2 = -1 with x = 2*k + 1. - Jean-Christophe Hervé, Nov 11 2015
Squares in the main diagonal of the natural number array, A000027. - Clark Kimberling, Mar 12 2023

Examples

			From _Ravi Kumar Davala_, May 26 2013: (Start)
A001333(0)=1, A001333(4)=17, A001333(8)=577, A000129(0)=0, A000129(2)=2, A000129(4)=12, A000129(8)=408 so clearly
a(n+m)=A001333(4*m)*a(n)-(A000129(2*m))^2+A000129(4*m)*sqrt(2*a(n)^2-a(n)), with m=1,2 is true.
A002203(0)=2, A002203(4)=34, A002203(8)=1154 so clearly
a(n+m)=(1/2)*A002203(4*m)*a(n)-(A000129(2*m))^2+A000129(4*m)*sqrt(2*a(n)^2-a(n)) is true for m=1,2
a(n+1)*a(n-1) = (a(n)+4)^2 , with n=1 is 841*1=(25+4)^2, for n=2 , 28561*25=(841+4)^2.
(End)
1 = 1 + 0, 25 = 16 + 9, 841 = 29^2 = 21^2 + 20^2 = 441 + 400.
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 256.

Crossrefs

Programs

  • GAP
    a := [1, 25, 841];; for i in [4..10^2] do a[i] := 35*a[i-1] - 35*a[i-2] + a[i-3]; od; a;  # Muniru A Asiru, Jan 17 2018
    
  • Magma
    I:=[1,25,841]; [n le 3 select I[n] else 35*Self(n-1)-35*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jan 20 2018
  • Maple
    CP := n -> 1+1/2*4*(n^2-n): N:=10: u:=3: v:=1: x:=4: y:=1: k_pcp:=[1]: for i from 1 to N do tempx:=x; tempy:=y; x:=tempx*u+8*tempy*v: y:=tempx*v+tempy*u: s:=(y+1)/2: k_pcp:=[op(k_pcp),CP(s)]: end do: k_pcp; # Steven Schlicker, Apr 24 2007
  • Mathematica
    LinearRecurrence[{35, -35, 1}, {1, 25, 841}, 15] (* Ant King, Nov 09 2011 *)
    CoefficientList[Series[(1 - 10 x + x^2) / ((1 - x) (1 - 34 x + x^2)), {x, 0, 33}], x] (* Vincenzo Librandi, Jan 20 2018 *)
  • PARI
    a(n)=if(n<0,0,sqr(subst(poltchebi(n+1)+poltchebi(n),x,3)/4))
    
  • PARI
    vector(40, n, n--; (([5, 2; 2, 1]^n)[1, 1])^2) \\ Altug Alkan, Nov 11 2015
    

Formula

From Benoit Cloitre, Jan 19 2003: (Start)
a(n) = A078522(n) + 1.
a(n) = ceiling(A*B^n) where A = (3 + 2*sqrt(2))/8 and B = 17 + 12*sqrt(2). (End)
G.f.: (1-10x+x^2)/((1-x)(1-34x+x^2)).
a(n) = ceiling(A046176(n)/sqrt(2)). - Helge Robitzsch (hrobi(AT)math.uni-goettingen.de), Jul 28 2000
a(n+1) = 17*a(n) - 4 + 12*sqrt(2*a(n)^2 - a(n)). - Richard Choulet, Sep 14 2007
Define x(n) + y(n)*sqrt(8) = (4+sqrt(8))*(3+sqrt(8))^n, s(n) = (y(n)+1)/2; then a(n) = (1/2)*(2+4*(s(n)^2 - s(n))). - Steven Schlicker, Apr 24 2007
From Ant King, Nov 09 2011: (Start)
a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3).
a(n) = 34*a(n-1) - a(n-2) - 8.
a(n) = 1/8 * ((1 + sqrt(2))^(4*n-2) + (1 - sqrt(2))^(4*n-2) + 2).
a(n) = ceiling((1/8) * (1 + sqrt(2))^(4*n-2)). (End)
From Ravi Kumar Davala, May 26 2013: (Start)
a(n+2) = 577*a(n) - 144 + 408*sqrt(2*a(n)^2 - a(n)).
a(n+m) = A001333(4*m)*a(n) - (A000129(2*m))^2 + A000129(4*m)*sqrt(2*a(n)^2 - a(n)).
a(n+m) = (1/2)*A002203(4*m)*a(n) - (A000129(2*m))^2 + A000129(4*m)*sqrt(2*a(n)^2 - a(n)).
a(n+1)*a(n-1) = (a(n)+4)^2. (End)
a(n) = A001652(n)^2 + A046090(n)^2. - César Aguilera, Jan 15 2018
Limit_{n -> infinity} a(n)/a(n-1) = A156164. - César Aguilera, Jan 28 2018
sqrt(2*a(n))-1 = A002315(n). - Ezhilarasu Velayutham, Apr 05 2019
4*a(n) = 1 +3*A077420(n). - R. J. Mathar, Mar 05 2024
Product_{n>=0} (1 + 4/a(n)) = 2*sqrt(2) + 3 (Koshy, 2022, section 3, p. 19). - Amiram Eldar, Jan 23 2025

Extensions

Entry edited by N. J. A. Sloane, Sep 14 2007

A157014 Expansion of x*(1-x)/(1 - 22*x + x^2).

Original entry on oeis.org

1, 21, 461, 10121, 222201, 4878301, 107100421, 2351330961, 51622180721, 1133336644901, 24881784007101, 546265911511321, 11992968269241961, 263299036011811821, 5780585823990618101, 126909589091781786401, 2786230374195208682721, 61170158643202809233461
Offset: 1

Views

Author

Paul Weisenhorn, Feb 21 2009

Keywords

Comments

This sequence is part of a solution of a general problem involving 2 equations, three sequences a(n), b(n), c(n) and a constant A:
A * c(n)+1 = a(n)^2,
(A+1) * c(n)+1 = b(n)^2, where solutions are given by the recurrences:
a(1) = 1, a(2) = 4*A+1, a(n) = (4*A+2)*a(n-1)-a(n-2) for n>2, resulting in a(n) terms 1, 4*A+1, 16*A^2+12*A+1, 64*A^3+80*A^2+24*A+1, ...;
b(1) = 1, b(2) = 4*A+3, b(n) = (4*A+2)*b(n-1)-b(n-2) for n>2, resulting in b(n) terms 1, 4*A+3, 16*A^2+20*A+5, 64*A^3+112*A^2+56*A+7, ...;
c(1) = 0, c(2) = 16*A+8, c(3) = (16*A^2+16*A+3)*c(2), c(n) = (16*A^2+16*A+3) * (c(n-1)-c(n-2)) + c(n-3) for n>3, resulting in c(n) terms 0, 16*A+8, 256*A^3+384*A^2+176*A+24, 4096*A^5 + 10240*A^4 + 9472*A^3 + 3968*A^2 + 736*A + 48, ... .
A157014 is the a(n) sequence for A=5.
For other A values the a(n), b(n) and c(n) sequences are in the OEIS:
A a-sequence b-sequence c-sequence
2 A072256 A054320(n-1) A045502(n-1)
9 A097315(n-1) A097314(n-1) A157881
Positive values of x (or y) satisfying x^2 - 22xy + y^2 + 20 = 0. - Colin Barker, Feb 19 2014
From Klaus Purath, Apr 22 2025: (Start)
Nonnegative solutions to the Diophantine equation 5*b(n)^2 - 6*a(n)^2 = -1. The corresponding b(n) are A133283(n). Note that (b(n+1)^2 - b(n)*b(n+2))/4 = 6 and (a(n)*a(n+2) - a(n+1)^2)/4 = 5.
(a(n) + b(n))/2 = (b(n+1) - a(n+1))/2 = A077421(n-1) = Lucas U(22,1). Also b(n)*a(n+1) - b(n+1)*a(n) = -2.
a(n)=(t(i+2*n-1) + t(i))/(t(i+n) + t(i+n-1)) as long as t(i+n) + t(i+n-1) != 0 for any integer i and n >= 1 where (t) is a sequence satisfying t(i+3) = 21*t(i+2) - 21*t(i+1) + t(i) or t(i+2) = 22*t(i+1) - t(i) without regard to initial values and including this sequence itself. (End)

Crossrefs

Cf. similar sequences listed in A238379.

Programs

  • GAP
    a:=[1,21];; for n in [3..20] do a[n]:=22*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 14 2020
  • Magma
    I:=[1,21]; [n le 2 select I[n] else 22*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 21 2014
    
  • Maple
    seq( simplify(ChebyshevU(n-1,11) - ChebyshevU(n-2,11)), n=1..20); # G. C. Greubel, Jan 14 2020
  • Mathematica
    CoefficientList[Series[(1-x)/(1-22x+x^2), {x,0,20}], x] (* Vincenzo Librandi, Feb 21 2014 *)
    a[c_, n_] := Module[{},
       p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
       d := Denominator[Convergents[Sqrt[c], n p]];
       t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
       Return[t];
    ] (* Complement of A041049 *)
    a[30, 20] (* Gerry Martens, Jun 07 2015 *)
    Table[ChebyshevU[n-1, 11] - ChebyshevU[n-2, 11], {n,20}] (* G. C. Greubel, Jan 14 2020 *)
  • PARI
    Vec((1-x)/(1-22*x+x^2)+O(x^20)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • Sage
    [chebyshev_U(n-1,11) - chebyshev_U(n-2,11) for n in (1..20)] # G. C. Greubel, Jan 14 2020
    

Formula

G.f.: x*(1-x)/(1-22*x+x^2).
a(1) = 1, a(2) = 21, a(n) = 22*a(n-1) - a(n-2) for n>2.
5*A157460(n)+1 = a(n)^2 for n>=1.
6*A157460(n)+1 = A133283(n)^2 for n>=1.
a(n) = (6+sqrt(30)-(-6+sqrt(30))*(11+2*sqrt(30))^(2*n))/(12*(11+2*sqrt(30))^n). - Gerry Martens, Jun 07 2015
a(n) = ChebyshevU(n-1, 11) - ChebyshevU(n-2, 11). - G. C. Greubel, Jan 14 2020

Extensions

Edited by Alois P. Heinz, Sep 09 2011

A160682 The list of the A values in the common solutions to 13*k+1 = A^2 and 17*k+1 = B^2.

Original entry on oeis.org

1, 14, 209, 3121, 46606, 695969, 10392929, 155197966, 2317576561, 34608450449, 516809180174, 7717529252161, 115246129602241, 1720974414781454, 25699370092119569, 383769576967012081, 5730844284413061646, 85578894689228912609, 1277952576054020627489
Offset: 1

Views

Author

Paul Weisenhorn, May 23 2009

Keywords

Comments

This summarizes the case C=13 of common solutions to C*k+1=A^2, (C+4)*k+1=B^2.
The 2 equations are equivalent to the Pell equation x^2-C*(C+4)*y^2=1,
with x=(C*(C+4)*k+C+2)/2; y=A*B/2 and with smallest values x(1) = (C+2)/2, y(1)=1/2.
Generic recurrences are:
A(j+2)=(C+2)*A(j+1)-A(j) with A(1)=1; A(2)=C+1.
B(j+2)=(C+2)*B(j+1)-B(j) with B(1)=1; B(2)=C+3.
k(j+3)=(C+1)*(C+3)*( k(j+2)-k(j+1) )+k(j) with k(1)=0; k(2)=C+2; k(3)=(C+1)*(C+2)*(C+3).
x(j+2)=(C^2+4*C+2)*x(j+1)-x(j) with x(1)=(C+2)/2; x(2)=(C^2+4*C+1)*(C+2)/2;
Binet-type of solutions of these 2nd order recurrences are:
R=C^2+4*C; S=C*sqrt(R); T=(C+2); U=sqrt(R); V=(C+4)*sqrt(R);
A(j)=((R+S)*(T+U)^(j-1)+(R-S)*(T-U)^(j-1))/(R*2^j);
B(j)=((R+V)*(T+U)^(j-1)+(R-V)*(T-U)^(j-1))/(R*2^j);
x(j)+sqrt(R)*y(j)=((T+U)*(C^2*4*C+2+(C+2)*sqrt(R))^(j-1))/2^j;
k(j)=(((T+U)*(R+2+T*U)^(j-1)+(T-U)*(R+2-T*U)^(j-1))/2^j-T)/R. [Paul Weisenhorn, May 24 2009]
.C -A----- -B----- -k-----
For n>=2, a(n) equals the permanent of the (2n-2)X(2n-2) tridiagonal matrix with sqrt(13)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. [John M. Campbell, Jul 08 2011]
Positive values of x (or y) satisfying x^2 - 15xy + y^2 + 13 = 0. - Colin Barker, Feb 11 2014

Crossrefs

Cf. similar sequences listed in A238379.

Programs

  • Magma
    I:=[1,14]; [n le 2 select I[n] else 15*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 12 2014
    
  • Mathematica
    LinearRecurrence[{15,-1},{1,14},20] (* Harvey P. Dale, Oct 08 2012 *)
    CoefficientList[Series[(1 - x)/(1 - 15 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
  • PARI
    a(n) = round((2^(-1-n)*((15-sqrt(221))^n*(13+sqrt(221))+(-13+sqrt(221))*(15+sqrt(221))^n))/sqrt(221)) \\ Colin Barker, Jul 25 2016

Formula

a(n) = 15*a(n-1)-a(n-2).
G.f.: (1-x)*x/(1-15*x+x^2).
a(n) = (2^(-1-n)*((15-sqrt(221))^n*(13+sqrt(221))+(-13+sqrt(221))*(15+sqrt(221))^n))/sqrt(221). - Colin Barker, Jul 25 2016

Extensions

Edited, extended by R. J. Mathar, Sep 02 2009
First formula corrected by Harvey P. Dale, Oct 08 2012

A278310 Numbers m such that T(m) + 3*T(m+1) is a square, where T = A000217.

Original entry on oeis.org

3, 143, 4899, 166463, 5654883, 192099599, 6525731523, 221682772223, 7530688524099, 255821727047183, 8690408031080163, 295218051329678399, 10028723337177985443, 340681375412721826703, 11573138040695364122499, 393146012008229658338303, 13355391270239113019379843
Offset: 1

Views

Author

Bruno Berselli, Nov 17 2016

Keywords

Comments

Equivalently, both m+1 and 2*m+3 are squares for nonnegative m.
Corresponding triangular numbers T(m): 6, 10296, 12002550, 13855048416, 15988853699286, 18451128064030200, 21292585958400815526, ...
Square roots of T(m) + 3*T(m+1) are listed by A082405 (after 0).
Negative values of m for which T(m) + 3*T(m+1) is a square: -1, -2, -26, -842, -28562, -970226, -32959082, ...

Examples

			3 is in the sequence because T(3) + 3*T(4) = 6 + 3*10 = 6^2.
For n=5 is a(5) = 5654883, therefore floor(sqrt(5654883)) = 2377 = A182189(5) - 2 = 2379 - 2.
		

Crossrefs

Subsequence of A000466.
Cf. A278438: numbers m such that T(m) + 2*T(m+1) is a square.
Cf. A078522: numbers m such that 3*T(m) + T(m+1) is a square.
Cf. similar sequences with closed form ((1 + sqrt(2))^(4*r) + (1 - sqrt(2))^(4*r))/8 + k/4: A084703 (k=-1), A076218 (k=3), this sequence (k=-5).

Programs

  • Magma
    Iv:=[3,143]; [n le 2 select Iv[n] else 34*Self(n-1)-Self(n-2)+40: n in [1..20]];
  • Maple
    P:=proc(q) local n; for n from 3 to q do if type(sqrt(2*n^2+5*n+3),integer) then print(n); fi; od; end: P(10^9); # Paolo P. Lava, Nov 18 2016
  • Mathematica
    Table[((1 + Sqrt[2])^(4 n) + (1 - Sqrt[2])^(4 n))/8 - 5/4, {n, 1, 20}]
    RecurrenceTable[{a[1] == 3, a[2] == 143, a[n] == 34 a[n - 1] - a[n - 2] + 40}, a, {n, 1, 20}]
    LinearRecurrence[{35, -35, 1}, {3, 143, 4899}, 50] (* G. C. Greubel, Nov 20 2016 *)
  • PARI
    Vec(x*(3 + 38*x - x^2)/((1 - x)*(1 - 34*x + x^2)) + O(x^50)) \\ G. C. Greubel, Nov 20 2016
    
  • Sage
    def A278310():
        a, b = 3, 143
        yield a
        while True:
            yield b
            a, b = b, 34*b - a + 40
    a = A278310(); print([next(a) for  in range(18)]) # _Peter Luschny, Nov 18 2016
    

Formula

O.g.f.: x*(3 + 38*x - x^2)/((1 - x)*(1 - 34*x + x^2)).
E.g.f.: (exp((1-sqrt(2))^4*x) + exp((1+sqrt(2))^4*x) - 10*exp(x))/8 + 1.
a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3) for n>3.
a(n) = 34*a(n-1) - a(n-2) + 40 for n>2.
a(n) = a(-n) = ((1 + sqrt(2))^(4*n) + (1 - sqrt(2))^(4*n))/8 - 5/4.
a(n) = 4*A001109(n)^2 - 1.
a(n) = -A029546(n) + 38*A029546(n-1) + 3*A029546(n-2) for n>1.
Lim_{n -> infinity} a(n)/a(n-1) = A156164.
Floor(sqrt(a(n))) = A182189(n) - 2.
a(n) - a(n-1) = 4*A046176(n) for n>1.

A377016 Semiperimeter of the unique primitive Pythagorean triple whose short leg is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

Original entry on oeis.org

1, 28, 861, 28680, 970921, 32963140, 1119662181, 38034888528, 1292062686481, 43892073946540, 1491038320325421, 50651410052600280, 1720656899012149561, 58451683130389395028, 1985636569382856677301, 67453191675004485098400, 2291422880375627492063521, 77840924741066359629967420
Offset: 0

Views

Author

Keywords

Comments

a(0) = 1 is included by convention. This corresponds to the Pythagorean triple 1^2 + 0^2 = 1^2.

Examples

			For n=2, the short leg is A002315(2) = 41 and the hypotenuse is A008844(n) = 841 so the semiperimeter is then a(2) = (41 + 840 + 841)/2 = 861.
		

References

  • Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.

Crossrefs

Programs

  • Mathematica
    s[n_]:=s[n]=Module[{a, b},a=((1+Sqrt[2])^(2n+1)-(Sqrt[2]-1)^(2n+1))/2;b=(a^2-1)/2;{(a+2b+1)/2}];semis={};Do[semis=Join[semis,FullSimplify[s[n]]],{n,0,17}];semis
  • PARI
    Vec((1 - 13*x - 41*x^2 + 21*x^3)/((1 - 34*x + x^2)*(1 - 6*x + x^2)*(1 - x)) + O(x^20)) \\ Andrew Howroyd, Oct 14 2024

Formula

a(n) = (A002315(n) + 2*A008844(n) - 1)/2.
G.f.: (1 - 13*x - 41*x^2 + 21*x^3)/((1 - 34*x + x^2)*(1 - 6*x + x^2)*(1 - x)). - Andrew Howroyd, Oct 14 2024

A377017 Area of the unique primitive Pythagorean triple whose short leg is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

Original entry on oeis.org

0, 84, 17220, 3412920, 675761016, 133797385260, 26491207202460, 5245125232676784, 1038508304885968560, 205619399242324129860, 40711602541676078766516, 8060691683852625858745320, 1595976241800278270688414120, 315995235184771245126273789084, 62565460590342906257639745449100
Offset: 0

Views

Author

Keywords

Comments

a(0)=0 is included by convention. This corresponds to the Pythagorean triple 1^2 + 0^2 = 1^2.
All terms in this sequence are divisible by 84.

Examples

			For n=2, the short leg is A002315(2) = 41 and the long leg is A008844(2)-1 = 840 so the area is then a(2) = 41*840/2 = 17220.
		

References

  • Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.

Crossrefs

Programs

  • Mathematica
    s[n_]:=s[n]=Module[{a, b}, a=((1+Sqrt[2])^(2n+1)-(Sqrt[2]-1)^(2n+1))/2; b=(a^2-1)/2; {(a*b)/2}]; areas={}; Do[areas=Join[areas, FullSimplify[s[n]]], {n, 0, 17}]; areas

Formula

a(n) = A002315(n)*(A008844(n)-1)/2.
G.f.: 84*x*(1 + x)/((1 - 198*x + x^2)*(1 - 6*x + x^2)). - Andrew Howroyd, Oct 14 2024

A284876 Positive integers that are square roots of products a*(a+d)*(a+2*d) with coprime a > 0, d >= 0.

Original entry on oeis.org

1, 35, 120, 1189, 1547, 1560, 2737, 4080, 8400, 13175, 24360, 29520, 31080, 39997, 40391, 52633, 62279, 65773, 80520, 93023, 131040, 133055, 133560, 185640, 212219, 240240, 241345, 379680, 385440, 393805, 399960, 434231, 449497, 471240, 510229, 555360, 585395
Offset: 1

Views

Author

Jonathan Sondow, Apr 05 2017

Keywords

Comments

The main entry for this sequence is A284666, formed by the triples a, a+d, a+2*d. The pairs a, d form A284874.
sqrt((1+d)*(1+2*d)) is a member if and only if d is in A078522. The values of sqrt((1+d)*(1+2*d)) form the subsequence A046176.

Examples

			gcd(1,24)=1 and 1*(1+24)*(1+2*24) = 25*49 = (5*7)^2, so 5*7 = 35 is a member.
gcd(18,7)=1 and 18*(18+7)*(18+2*7) = 18*25*32 = 9*25*64 = (3*5*8)^2, so 3*5*8 = 120 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    nn = 50000; t = {};
    p[a_, b_, c_] := a b c; Do[
    If[p[a, a + d, a + 2 d] <= 2 nn^2 && GCD[a, d] == 1 &&
       IntegerQ[Sqrt[p[a, a + d, a + 2 d]]],
      AppendTo[t, Sqrt[p[a, a + d, a + 2 d]]]], {a, 1, nn}, {d, 0, nn}]; Sort[t]
  • PARI
    is(n,s)={!fordiv(n*=n,a,a^3>n && return;issquare(n\a*8+a^2,&s) && (s-=3*a)%4==0 && gcd(s\4,a)==1 && break)} \\ M. F. Hasler, Apr 06 2017

Formula

a(k+1)^2 = A284666(3*k+1)*A284666(3*k+2)*A284666(3*k+3) = A284874(2*k+1)*(A284874(2*k+1) + A284874(2*k+2))*(A284874(2*k+1) + 2*A284874(2*k+2)) for k >= 0.

Extensions

a(19)-a(37) from Giovanni Resta, Apr 06 2017

A284666 List of 3-term arithmetic progressions of coprime positive integers whose product is a square.

Original entry on oeis.org

1, 1, 1, 1, 25, 49, 18, 25, 32, 1, 841, 1681, 49, 169, 289, 50, 169, 288, 49, 289, 529, 128, 289, 450, 98, 625, 1152, 289, 625, 961, 800, 841, 882, 162, 1681, 3200, 288, 1369, 2450, 529, 1369, 2209, 1, 28561, 57121, 49, 5329, 10609, 961, 1681, 2401, 289, 2809, 5329
Offset: 1

Views

Author

Jonathan Sondow, Mar 31 2017

Keywords

Comments

This is a 3-column table read by rows a, a+d, a+2*d. Each row has product a square. The rows are ordered by the products. The square roots of the products form A284876, which contains A046176. The pairs a,d form A284874.
Goldbach proved that a product of 3 consecutive positive integers is never a square.
Euler proved that a product of 4 consecutive positive integers is never a square.
Erdos and Selfridge (1975) proved that a product of 2 or more consecutive positive integers is never a square or a higher power.
Saradha (1998) proved that 18, 25, 32 is the only arithmetic progression a, a+d, ..., a+(k-1)*d whose product is a square if a>=1, 1=3 with gcd(a,d)=1. In 1997 she showed that the product is not a square or a higher power if a>=1, 1=3 with gcd(a,d)=1.
(1, 1+d, 1+2*d) is in the table if and only if d is in A078522. - Robert Israel, Apr 05 2017 - Jonathan Sondow, Apr 06 2017

Examples

			18*(18+7)*(18+2*7) = 18*25*32 = 9*25*64 = (3*5*8)^2 and gcd(18,25,32) = 1, so 18,25,32 is in the sequence.
		

Crossrefs

Programs

  • Maple
    N:= 10^11: # to get all triples where the product <= N
    Res:= [1,0]:
    for a from 1 to floor(N^(1/3)) do
      for d from 1 while a*(a+d)*(a+2*d) <= N do
         if igcd(a,d) = 1 and issqr(a*(a+d)*(a+2*d)) then
           Res:= Res, [a,d]
         fi
      od
    od:
    Res:= sort([Res], (s,t) -> s[1]*(s[1]+s[2])*(s[1]+2*s[2]) <= t[1]*(t[1]+t[2])*(t[1]+2*t[2])):
    map(t -> (t[1],t[1]+t[2],t[1]+2*t[2]), Res); # Robert Israel, Apr 05 2017
  • Mathematica
    nn = 50000; t = {};
    p[a_, b_, c_] := a *b*c; Do[
    If[p[a, a + d, a + 2 d] <= 2 nn^2 && GCD[a, d] == 1 &&
       IntegerQ[Sqrt[p[a, a + d, a + 2 d]]],
      AppendTo[t, {a, a + d, a + 2 d}]], {a, 1, nn}, {d, 0, nn}];
    Sort[t, p[#1[[1]], #1[[2]], #1[[3]]] <
        p[#2[[1]], #2[[2]], #2[[3]]] &] // Flatten

Formula

a(3*k+1) = A284874(2*k+1) and a(3*k+2) = A284874(2*k+1)+A284874(2*k+2) and a(3*k+3) = A284874(2*k+1)+2*A284874(2*k+2) and a(3*k+1)*a(3*k+2)*a(3*k+3) = A284876(k+1)^2 for k>=0.
Showing 1-10 of 12 results. Next