A352183 Erroneous version of A046176.
1, 35, 1189, 40931
Offset: 1
Keywords
References
- M. Rignaux, Query 2175, L'Intermédiaire des Mathématiciens, 24 (1917), 80.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(2) = ((17 + 12*sqrt(2))^2 + (17 - 12*sqrt(2))^2 - 2)/32 = (289 + 24*sqrt(2) + 288 + 289 - 24*sqrt(2) + 288 - 2)/32 = (578 + 576 - 2)/32 = 1152/32 = 36 and 6^2 = 36 = 8*9/2 => a(2) is both the 6th square and the 8th triangular number.
a001110 n = a001110_list !! n a001110_list = 0 : 1 : (map (+ 2) $ zipWith (-) (map (* 34) (tail a001110_list)) a001110_list) -- Reinhard Zumkeller, Oct 12 2011
[n le 2 select n-1 else Floor((6*Sqrt(Self(n-1)) - Sqrt(Self(n-2)))^2): n in [1..20]]; // Vincenzo Librandi, Jul 22 2015
a:=17+12*sqrt(2); b:=17-12*sqrt(2); A001110:=n -> expand((a^n + b^n - 2)/32); seq(A001110(n), n=0..20); # Jaap Spies, Dec 12 2004 A001110:=-(1+z)/((z-1)*(z**2-34*z+1)); # Simon Plouffe in his 1992 dissertation
f[n_]:=n*(n+1)/2; lst={}; Do[If[IntegerQ[Sqrt[f[n]]],AppendTo[lst,f[n]]],{n,0,10!}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 12 2010 *) Table[(1/8) Round[N[Sinh[2 n ArcSinh[1]]^2, 100]], {n, 0, 20}] (* Artur Jasinski, Feb 10 2010 *) Transpose[NestList[Flatten[{Rest[#],34Last[#]-First[#]+2}]&, {0,1},20]][[1]] (* Harvey P. Dale, Mar 25 2011 *) LinearRecurrence[{35, -35, 1}, {0, 1, 36}, 20] (* T. D. Noe, Mar 25 2011 *) LinearRecurrence[{6,-1},{0,1},20]^2 (* Harvey P. Dale, Oct 22 2012 *) (* Square = Triangular = Triangular = A001110 *) ChebyshevU[#-1,3]^2==Binomial[ChebyshevT[#/2,3]^2,2]==Binomial[(1+ChebyshevT[#,3])/2,2]=={1,36,1225,41616,1413721}[[#]]&@Range[5] True (* Bill Gosper, Jul 20 2015 *) L=0;r={};Do[AppendTo[r,L];L=1+17*L+6*Sqrt[L+8*L^2],{i,1,19}];r (* Kebbaj Mohamed Reda, Aug 02 2023 *)
a=vector(100);a[1]=1;a[2]=36;for(n=3,#a,a[n]=34*a[n-1]-a[n-2]+2);a \\ Charles R Greathouse IV, Jul 25 2011
;; With memoizing definec-macro from Antti Karttunen's IntSeq-library. (definec (A001110 n) (if (< n 2) n (+ 2 (- (* 34 (A001110 (- n 1))) (A001110 (- n 2)))))) ;; Antti Karttunen, Dec 06 2013
;; For testing whether n is in this sequence: (define (inA001110? n) (and (zero? (A068527 n)) (inA001109? (floor->exact (sqrt n))))) (define (inA001109? n) (= (* 8 n n) (floor->exact (* (sqrt 8) n (ceiling->exact (* (sqrt 8) n)))))) ;; Antti Karttunen, Dec 06 2013
From _Ravi Kumar Davala_, May 26 2013: (Start) A001333(0)=1, A001333(4)=17, A001333(8)=577, A000129(0)=0, A000129(2)=2, A000129(4)=12, A000129(8)=408 so clearly a(n+m)=A001333(4*m)*a(n)-(A000129(2*m))^2+A000129(4*m)*sqrt(2*a(n)^2-a(n)), with m=1,2 is true. A002203(0)=2, A002203(4)=34, A002203(8)=1154 so clearly a(n+m)=(1/2)*A002203(4*m)*a(n)-(A000129(2*m))^2+A000129(4*m)*sqrt(2*a(n)^2-a(n)) is true for m=1,2 a(n+1)*a(n-1) = (a(n)+4)^2 , with n=1 is 841*1=(25+4)^2, for n=2 , 28561*25=(841+4)^2. (End) 1 = 1 + 0, 25 = 16 + 9, 841 = 29^2 = 21^2 + 20^2 = 441 + 400.
a := [1, 25, 841];; for i in [4..10^2] do a[i] := 35*a[i-1] - 35*a[i-2] + a[i-3]; od; a; # Muniru A Asiru, Jan 17 2018
I:=[1,25,841]; [n le 3 select I[n] else 35*Self(n-1)-35*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jan 20 2018
CP := n -> 1+1/2*4*(n^2-n): N:=10: u:=3: v:=1: x:=4: y:=1: k_pcp:=[1]: for i from 1 to N do tempx:=x; tempy:=y; x:=tempx*u+8*tempy*v: y:=tempx*v+tempy*u: s:=(y+1)/2: k_pcp:=[op(k_pcp),CP(s)]: end do: k_pcp; # Steven Schlicker, Apr 24 2007
LinearRecurrence[{35, -35, 1}, {1, 25, 841}, 15] (* Ant King, Nov 09 2011 *) CoefficientList[Series[(1 - 10 x + x^2) / ((1 - x) (1 - 34 x + x^2)), {x, 0, 33}], x] (* Vincenzo Librandi, Jan 20 2018 *)
a(n)=if(n<0,0,sqr(subst(poltchebi(n+1)+poltchebi(n),x,3)/4))
vector(40, n, n--; (([5, 2; 2, 1]^n)[1, 1])^2) \\ Altug Alkan, Nov 11 2015
a:=[1,21];; for n in [3..20] do a[n]:=22*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 14 2020
I:=[1,21]; [n le 2 select I[n] else 22*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 21 2014
seq( simplify(ChebyshevU(n-1,11) - ChebyshevU(n-2,11)), n=1..20); # G. C. Greubel, Jan 14 2020
CoefficientList[Series[(1-x)/(1-22x+x^2), {x,0,20}], x] (* Vincenzo Librandi, Feb 21 2014 *) a[c_, n_] := Module[{}, p := Length[ContinuedFraction[ Sqrt[ c]][[2]]]; d := Denominator[Convergents[Sqrt[c], n p]]; t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}]; Return[t]; ] (* Complement of A041049 *) a[30, 20] (* Gerry Martens, Jun 07 2015 *) Table[ChebyshevU[n-1, 11] - ChebyshevU[n-2, 11], {n,20}] (* G. C. Greubel, Jan 14 2020 *)
Vec((1-x)/(1-22*x+x^2)+O(x^20)) \\ Charles R Greathouse IV, Sep 23 2012
[chebyshev_U(n-1,11) - chebyshev_U(n-2,11) for n in (1..20)] # G. C. Greubel, Jan 14 2020
I:=[1,33]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 22 2011
LinearRecurrence[{34,-1},{1,33},20] (* Vincenzo Librandi, Nov 22 2011 *) a[c_, n_] := Module[{}, p := Length[ContinuedFraction[ Sqrt[ c]][[2]]]; d := Denominator[Convergents[Sqrt[c], n p]]; t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}]; Return[t]; ] (* Complement of A041027 *) a[18, 20] (* Gerry Martens, Jun 07 2015 *)
makelist(expand(((1+sqrt(2))^(4*n+2)+(1-sqrt(2))^(4*n+2))/6),n,0,14); /* _Bruno Berselli, Nov 22 2011 */
Vec((1-x)/(1-34*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Nov 22 2011
a:=[0,24];; for n in [3..20] do a[n]:=34*a[n-1]-a[n-2]+24; od; a; # G. C. Greubel, Jan 13 2020
I:=[0,24]; [n le 2 select I[n] else 34*Self(n-1) - Self(n-2) + 24: n in [1..20]]; // Marius A. Burtea, Sep 15 2019
seq(coeff(series(24*x^2/((1-x)*(1-34*x+x^2)), x, n+1), x, n), n = 1..20); # G. C. Greubel, Jan 13 2020
RecurrenceTable[{a[1]==0, a[2]==24, a[n]==34a[n-1] -a[n-2] +24}, a[n], {n,20}] Drop[CoefficientList[Series[24*x^2/((1-x)*(1-34*x+x^2)), {x,0,20}], x], 1] (* Indranil Ghosh, Mar 15 2017 *) Table[3*(ChebyshevT[n, 17] -16*ChebyshevU[n-1, 17] -1)/4, {n,20}] (* G. C. Greubel, Jan 13 2020 *)
concat(0, Vec(24*x^2/((1-x)*(1-34*x+x^2)) + O(x^20))) \\ Colin Barker, Nov 21 2016
def A078522_list(prec): P.= PowerSeriesRing(ZZ, prec) return P( 24*x^2/((1-x)*(1-34*x+x^2)) ).list() a=A078522_list(20); a[1:] # G. C. Greubel, Jan 13 2020
[4*Evaluate(ChebyshevU(n), 3)^2: n in [0..30]]; // G. C. Greubel, Aug 18 2022
b[n_]:= b[n]= If[n<2, n, 34*b[n-1] -b[n-2] +2]; (* b=A001110 *) a[n_]:= 4*b[n]; Table[a[n], {n, 0, 30}] 4*ChebyshevU[Range[-1,30], 3]^2 (* G. C. Greubel, Aug 18 2022 *)
[4*chebyshev_U(n-1, 3)^2 for n in (0..30)] # G. C. Greubel, Aug 18 2022
LinearRecurrence[{35,-35,1},{1,49,1681},17] (* Stefano Spezia, Aug 17 2024 *)
LinearRecurrence[{1155, -1155, 1}, {1, 1225, 1413721}, 11] (* Ant King, Nov 08 2011 *)
Vec(x*(1+70*x+x^2)/((1-x)*(1-1154*x+x^2)) + O(x^100)) \\ Colin Barker, Jan 16 2015
a(1)= 15 is a term because it is triangular and 8*15 = 120 is also triangular. a(2) = 1154*a(0) - a(-2) + 81 = 0 - 15 + 81 = 66; a(3) = 1154*a(1) - a(-1) + 81 = 1154*15 - 0 + 81 = 17391, etc.
f := gfun:-rectoproc({a(n) = 1154*a(n - 2) - a(n - 4) + 81, a(1) = 15, a(0) = 0, a(-1) = 0, a(-2) = 15}, a(n), remember): map(f, [$ (0 .. 40)])[]; #
LinearRecurrence[{1, 1154, -1154, -1, 1}, {0, 15, 66, 17391, 76245}, 18] (* Amiram Eldar, Aug 08 2020 *) FullSimplify[Table[((Sqrt[2] + 1)^(4*n + 2)*(11 - 6*(-1)^n*Sqrt[2]) + (Sqrt[2] - 1)^(4*n + 2)*(11 + 6*(-1)^n*Sqrt[2]) - 18)/256, {n, 0, 17}]] (* Vaclav Kotesovec, Sep 08 2020 *) Select[Accumulate[Range[0, 10^6]]/8, OddQ[Sqrt[8 # + 1]] &] (* The program generates the first 8 terms of the sequence. *) (* Harvey P. Dale, Jan 15 2024 *)
concat(0, Vec(3*x*(5 + 17*x + 5*x^2) / ((1 - x)*(1 - 34*x + x^2)*(1 + 34*x + x^2)) + O(x^40))) \\ Colin Barker, Aug 08 2020
Comments