A046176
Indices of square numbers that are also hexagonal.
Original entry on oeis.org
1, 35, 1189, 40391, 1372105, 46611179, 1583407981, 53789260175, 1827251437969, 62072759630771, 2108646576008245, 71631910824649559, 2433376321462076761, 82663163018885960315, 2808114166320660573949
Offset: 1
- M. Rignaux, Query 2175, L'Intermédiaire des Mathématiciens, 24 (1917), 80.
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Tanya Khovanova, Recursive Sequences.
- E. Kilic, Y. T. Ulutas, and N. Omur, A Formula for the Generating Functions of Powers of Horadam's Sequence with Two Additional Parameters, J. Int. Seq. 14 (2011) #11.5.6, table 4, k=1, t=3.
- Serge Perrine, About the diophantine equation z^2 = 32y^2 - 16, SCIREA Journal of Mathematics (2019) Vol. 4, Issue 5, 126-139.
- Maciej Ulas, On certain diophantine equations related to triangular and tetrahedral numbers, arXiv:0811.2477 [math.NT] (2008) , v_n in Theorem 5.6.
- P. H. van der Kamp, Global classification of two-component..., Found. Comput. Math. 9 (5) (2009) 559-597 near Eq. (4.7).
- Eric Weisstein's World of Mathematics, Hexagonal Square Number.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (34,-1).
-
List([0..20], n-> Lucas(2,-1, 4*n-2)[1]/2 ); # G. C. Greubel, Jan 13 2020
-
I:=[1,35]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 22 2011
-
seq( simplify(ChebyshevU(2*(n-1), 3)), n = 1..20); # G. C. Greubel, Jan 13 2020
-
LinearRecurrence[{34, -1}, {1, 35}, 15] (* Ant King, Nov 08 2011 *)
Fibonacci[4*Range[20] -2, 2]/2 (* G. C. Greubel, Jan 13 2020 *)
-
vector(21, n, polchebyshev(2*(n-1), 2, 3) ) \\ G. C. Greubel, Jan 13 2020
-
[lucas_number1(4*n-2, 2,-1)/2 for n in (1..20)] # G. C. Greubel, Jan 13 2020
A008844
Squares of sequence A001653: y^2 such that x^2 - 2*y^2 = -1 for some x.
Original entry on oeis.org
1, 25, 841, 28561, 970225, 32959081, 1119638521, 38034750625, 1292061882721, 43892069261881, 1491038293021225, 50651409893459761, 1720656898084610641, 58451683124983302025, 1985636569351347658201, 67453191674820837076801, 2291422880374557112953025
Offset: 0
From _Ravi Kumar Davala_, May 26 2013: (Start)
A001333(0)=1, A001333(4)=17, A001333(8)=577, A000129(0)=0, A000129(2)=2, A000129(4)=12, A000129(8)=408 so clearly
a(n+m)=A001333(4*m)*a(n)-(A000129(2*m))^2+A000129(4*m)*sqrt(2*a(n)^2-a(n)), with m=1,2 is true.
A002203(0)=2, A002203(4)=34, A002203(8)=1154 so clearly
a(n+m)=(1/2)*A002203(4*m)*a(n)-(A000129(2*m))^2+A000129(4*m)*sqrt(2*a(n)^2-a(n)) is true for m=1,2
a(n+1)*a(n-1) = (a(n)+4)^2 , with n=1 is 841*1=(25+4)^2, for n=2 , 28561*25=(841+4)^2.
(End)
1 = 1 + 0, 25 = 16 + 9, 841 = 29^2 = 21^2 + 20^2 = 441 + 400.
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 256.
- Muniru A Asiru, Table of n, a(n) for n = 0..100
- Daniel C. Fielder, Special integer sequences controlled by three parameters, Fibonacci Quarterly 6, 1968, 64-70.
- M. A. Gruber, Artemas Martin, A. H. Bell, J. H. Drummond, A. H. Holmes, and H. C. Wilkes, Problem 47, Amer. Math. Monthly, 4 (1897), 25-28.
- Thomas Koshy, Products Involving Reciprocals of Gibonacci Polynomials, The Fibonacci Quarterly, Vol. 60, No. 1 (2022), pp. 15-24.
- Giovanni Lucca, Integer Sequences and Circle Chains Inside a Circular Segment, Forum Geometricorum, Vol. 18 (2018), 47-55.
- Steven C. Schlicker, Numbers Simultaneously Polygonal and Centered Polygonal, Mathematics Magazine, Vol. 84, No. 5, December 2011
- Eric Weisstein's World of Mathematics, Hexagonal Square Number.
- Index entries for linear recurrences with constant coefficients, signature (35,-35,1).
-
a := [1, 25, 841];; for i in [4..10^2] do a[i] := 35*a[i-1] - 35*a[i-2] + a[i-3]; od; a; # Muniru A Asiru, Jan 17 2018
-
I:=[1,25,841]; [n le 3 select I[n] else 35*Self(n-1)-35*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jan 20 2018
-
CP := n -> 1+1/2*4*(n^2-n): N:=10: u:=3: v:=1: x:=4: y:=1: k_pcp:=[1]: for i from 1 to N do tempx:=x; tempy:=y; x:=tempx*u+8*tempy*v: y:=tempx*v+tempy*u: s:=(y+1)/2: k_pcp:=[op(k_pcp),CP(s)]: end do: k_pcp; # Steven Schlicker, Apr 24 2007
-
LinearRecurrence[{35, -35, 1}, {1, 25, 841}, 15] (* Ant King, Nov 09 2011 *)
CoefficientList[Series[(1 - 10 x + x^2) / ((1 - x) (1 - 34 x + x^2)), {x, 0, 33}], x] (* Vincenzo Librandi, Jan 20 2018 *)
-
a(n)=if(n<0,0,sqr(subst(poltchebi(n+1)+poltchebi(n),x,3)/4))
-
vector(40, n, n--; (([5, 2; 2, 1]^n)[1, 1])^2) \\ Altug Alkan, Nov 11 2015
A342709
12-gonal (dodecagonal) square numbers.
Original entry on oeis.org
1, 64, 3025, 142129, 6677056, 313679521, 14736260449, 692290561600, 32522920134769, 1527884955772561, 71778070001175616, 3372041405099481409, 158414167969674450625, 7442093853169599697984, 349619996931001511354641, 16424697761903901433970161
Offset: 1
142129 = 169*(5*169-4) = 377^2, so 142129 is the 169th 12-gonal number and the 377th square, hence 142129 is a term.
-
with(combinat):
seq(fibonacci(4*n-2)^2, n=1..16);
-
Table[Fibonacci[4*n - 2]^2, {n, 1, 16}] (* Amiram Eldar, Mar 19 2021 *)
-
a(n) = fibonacci(4*n-2)^2; \\ Michel Marcus, Mar 21 2021
A253826
Indices of centered octagonal numbers (A016754) which are also triangular numbers (A000217).
Original entry on oeis.org
1, 18, 595, 20196, 686053, 23305590, 791703991, 26894630088, 913625718985, 31036379815386, 1054323288004123, 35815955412324780, 1216688160731038381, 41331581509442980158, 1404057083160330286975, 47696609245941786776976, 1620280657278860420130193
Offset: 1
18 is in the sequence because the 18th centered octagonal number is 1225, which is also the 49th triangular number.
18 is in the sequence because the 18th centered octagonal number 1225 is also the 25th hexagonal number. - _Colin Barker_, Jan 25 2015
A280181
Indices of centered 9-gonal numbers (A060544) that are also squares (A000290).
Original entry on oeis.org
1, 17, 561, 19041, 646817, 21972721, 746425681, 25356500417, 861374588481, 29261379507921, 994025528680817, 33767606595639841, 1147104598723073761, 38967788749988868017, 1323757712900898438801, 44968794449880558051201, 1527615253583038075302017
Offset: 1
17 is in the sequence because the 17th centered 9-gonal number is 1225, which is also the 35th square.
From _Jon E. Schoenfield_, Sep 06 2019: (Start)
The following table illustrates the relationship between the NSW numbers (A002315), the odd Pell numbers (A001653), and the terms of this sequence:
.
| A002315(n-1)^2 | 2*A001653(n)^2 |
n | = 3*a(n) - 2 | = 3*a(n) - 1 | 3*a(n)
--+------------------+-------------------+-------------------
1 | 1^2 = 1 | 1^2*2 = 2 | 1*3 = 3
2 | 7^2 = 49 | 5^2*2 = 50 | 17*3 = 51
3 | 41^2 = 1681 | 29^2*2 = 1682 | 561*3 = 1683
4 | 239^2 = 57121 | 169^2*2 = 57122 | 19041*3 = 57123
5 | 1393^2 = 1940449 | 985^2*2 = 1940450 | 646817*3 = 1940451
(End)
-
LinearRecurrence[{35, -35, 1}, {1, 17, 561}, 50] (* G. C. Greubel, Dec 28 2016 *)
-
Vec(x*(1 - 18*x + x^2) / ((1 - x)*(1 - 34*x + x^2)) + O(x^20))
A333641
11-gonal (or hendecagonal) square numbers.
Original entry on oeis.org
0, 1, 196, 29241, 1755625, 261468900, 38941102225, 2337990844401, 348201795147556, 51858411008887561, 3113535139359330841, 463705205422871375236, 69060571958250748760481, 4146338334574433921200225, 617522713934165528806340100, 91968930524758079223806760025
Offset: 1
1755625 is a term because 625*(9*625-7)/2 = 1325^2 = 1755625; that means that 1755625 is the 625th 11-gonal number and the square of 1325.
Cf.
A001110 (square triangulars),
A036353 (square pentagonals),
A046177 (square hexagonals),
A036354 (square heptagonals),
A036428 (square octagonals),
A036411 (square 9-gonals),
A188896 (only {0,1} are square 10-gonals), this sequence (square 11-gonals),
A342709 (square 12-gonals).
-
for k from 0 to 8000000 do
d:= k*(9*k-7)/2;
if issqr(d) then print(k,sqrt(d),d); else fi; od:
-
Last /@ Solve[(18*x - 7)^2 - 72*y^2 == 49 && x >= 0 && y >= 0 && y < 10^16, {x, y}, Integers] /. Rule -> (#2^2 &) (* Amiram Eldar, Mar 31 2020 *)
-
concat(0, Vec(-x*(1 + 195*x + 29045*x^2 + 394670*x^3 + 29045*x^4 + 195*x^5 + x^6)/(-1 + x + 1331714*x^3 - 1331714*x^4 - x^6 + x^7) + O(x^20))) \\ Jinyuan Wang, Mar 31 2020
A350712
a(n) is the smallest hexagonal number for which the symmetric representation of sigma(n) has width 2*n, n >= 0, at the diagonal.
Original entry on oeis.org
0, 6, 120, 2016, 7140, 61776, 103740, 738720, 437580, 1185030, 4680270, 4426800, 2031120, 6193440, 4915680, 30728880, 2162160, 48565440, 134734320, 286071240, 163723560, 376902240, 536592420, 137373600, 76576500, 391986000, 214980480, 103672800, 1018606680, 5401294080
Offset: 0
a(1) = 6, and a(2) = 120 since all hexagonal numbers k, 6 <= k < 120, have width 2 at the diagonal.
-
(* for function a2[ ] see A237048 and A249223 *)
(* parameter bw is an upper bound estimate for how many values will be returned *)
a350712[n_, bw_] := Module[{widthL=Table[0, bw], wL, cL, i, w}, wL=Map[#(2#-1)&, Range[n]]; cL=Map[Last[a2[#]]&, wL]; For[i=1, i<=n, i++, w=cL[[i]]; If[EvenQ[w]&&widthL[[w/2]]==0, widthL[[w/2]]=wL[[i]]]]; Join[{0}, widthL]]
Take[a350712[55000, 50], 37]
Showing 1-7 of 7 results.
Comments