cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A377725 Length of the short leg of the unique primitive Pythagorean triple whose inradius is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

Original entry on oeis.org

3, 15, 83, 479, 2787, 16239, 94643, 551615, 3215043, 18738639, 109216787, 636562079, 3710155683, 21624372015, 126036076403, 734592086399, 4281516441987, 24954506565519, 145445522951123, 847718631141215, 4940866263896163, 28797478952235759, 167844007449518387
Offset: 1

Views

Author

Keywords

Examples

			Triangles begin:
  n=1:      3,         4,         5;
  n=2:     15,       112,       113;
  n=3:     83,      3444,      3445;
  n=4:    479,    114720,    114721;
  ...
This sequence gives the first column.
		

Crossrefs

Cf. A002315, A377016, A377017, A377726, A385977 (long leg).

Formula

a(n) = 2*A002315(n) + 1.

A377726 Lengths of the long leg of the unique primitive Pythagorean triple (x,y,z) such that (x-y+z)/2 is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

Original entry on oeis.org

84, 3280, 113764, 3878112, 131820084, 4478459440, 152138450884, 5168244315840, 175568258308884, 5964153062868112, 202605638937276964, 6882627588628286880, 233806732478308836084, 7942546277279354556400, 269812766698548756220804, 9165691521493946935370112
Offset: 1

Views

Author

Keywords

Examples

			Triangles begins:
  n=1:     13,        84,        85;
  n=2:     81,      3280,      3281;
  n=3:    477,    113764,    113765;
  ...
This sequence gives the middle column.
		

References

  • Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.

Crossrefs

Cf. A002315, A377016, A377017, A377725, A362545 (short legs).

Programs

  • Mathematica
    ra[n_]:=ra[n]=Module[{ra},ra=((1+Sqrt[2])^(2n+1)-(Sqrt[2]-1)^(2n+1))/2;{2ra-1,2ra^2-2ra,2ra^2-2ra+1}];exradio={};Do[exradio=Join[exradio,FullSimplify[ra[n]]],{n,0,10}];exradio

Formula

a(n) = 2 * A002315(n) * (A002315(n) - 1).

A378965 Semiperimeter of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

Original entry on oeis.org

1, 91, 3321, 114003, 3879505, 131828203, 4478506761, 152138726691, 5168245923361, 175568267678203, 5964153117476505, 202605639255558003, 6882627590483364721, 233806732489121022091, 7942546277342372594601, 269812766698916052264003, 9165691521496087693591105, 311363698964228006760021403
Offset: 0

Views

Author

Keywords

Examples

			For n=2, the short leg is A377726(2,1) = 13, the long leg is A377725(2,2) = 842 and the hypotenuse is A377725(2,3) = 85 so the semiperimeter is then a(2) = (13 + 84 + 85)/2 = 91.
		

References

  • Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.

Crossrefs

Programs

  • Mathematica
    s[n_]:=s[n]=Module[{ra},ra=((1+Sqrt[2])^(2n+1)-(Sqrt[2]-1)^(2n+1))/2;{ra(2ra-1)}];semis={};Do[semis=Join[semis,FullSimplify[s[n]]],{n,0,17}];semis

Formula

a(n) = (A377726(n,1) + A377726(n,2) + A377726(n,3))/2.

A378966 Area of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

Original entry on oeis.org

0, 546, 132840, 27132714, 5400270960, 1070181351954, 211922939930520, 41960773653737946, 8308058686721274720, 1644954930586205575554, 325692811387179035829960, 64485533166912548464047114, 12767809924078284782564882640, 2527961881127459862292727058546, 500523684710829430645198931758200
Offset: 0

Views

Author

Keywords

Examples

			For n=2, the short leg is A377726(2,1) = 13 and the long leg   so the semiperimeter is then a(2) = (13 * 84)/2 =546.
		

References

  • Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.

Crossrefs

Programs

  • Mathematica
    ar[n_]:=ar[n]= Module[{ra},ra=((1+Sqrt[2])^(2n+1)-(Sqrt[2]-1)^(2n+1))/2;{ra(ra-1)(2ra-1)}];areas={};Do[areas=Join[areas,FullSimplify[ar[n]]],{n,0,16}];areas

Formula

a(n) = (A377726(n,1) * A377726(n,2))/2.

A379508 Sum of the legs of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

Original entry on oeis.org

1, 97, 3361, 114241, 3880897, 131836321, 4478554081, 152139002497, 5168247530881, 175568277047521, 5964153172084897, 202605639573839041, 6882627592338442561, 233806732499933208097, 7942546277405390632801, 269812766699283348307201, 9165691521498228451812097, 311363698964240484013304161
Offset: 0

Views

Author

Keywords

Examples

			For n=2, the short leg is A377726(2,1) = 13 and the long leg is A377725(2,2) = 84 so the semiperimeter is then a(2) = 13 + 84 = 97.
		

Crossrefs

Programs

  • Mathematica
    s[n_]:=s[n]=Module[{ra},ra=((1+Sqrt[2])^(2n+1)-(Sqrt[2]-1)^(2n+1))/2;{2ra^2-1}];sumas={};Do[sumas=Join[semis,FullSimplify[s[n]]],{n,0,17}];sumas

Formula

a(n) = A377726(n,1) + A377726(n,2).

A380302 Area of the unique primitive Pythagorean triple whose inradius is the n-th odd prime and whose short leg is an even number.

Original entry on oeis.org

60, 210, 504, 1716, 2730, 5814, 7980, 13800, 26970, 32736, 54834, 74046, 85140, 110544, 157410, 215940, 238266, 314364, 373176, 405150, 511920, 592620, 728910, 941094, 1061106, 1124760, 1259604, 1330890, 1481430, 2097024, 2299836, 2627934, 2743860, 3374850, 3511656, 3944154
Offset: 0

Views

Author

Keywords

References

  • Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2025.

Crossrefs

Programs

  • Mathematica
    a = Table[Prime[n], {n, 2, 42}]; Apply[Join, Map[{# (# + 1) (# + 2)} &, a]]

Formula

a(n) = ( A367335(n,1) * A367335(n,2) )/2.
Showing 1-6 of 6 results.