cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A029549 a(n + 3) = 35*a(n + 2) - 35*a(n + 1) + a(n), with a(0) = 0, a(1) = 6, a(2) = 210.

Original entry on oeis.org

0, 6, 210, 7140, 242556, 8239770, 279909630, 9508687656, 323015470680, 10973017315470, 372759573255306, 12662852473364940, 430164224521152660, 14612920781245825506, 496409142337836914550, 16863297918705209269200, 572855720093639278238256
Offset: 0

Views

Author

Keywords

Comments

Triangular numbers that are twice other triangular numbers. - Don N. Page
Triangular numbers that are also pronic numbers. These will be shown to have a Pythagorean connection in a paper in preparation. - Stuart M. Ellerstein (ellerstein(AT)aol.com), Mar 09 2002
In other words, triangular numbers which are products of two consecutive numbers. E.g., a(2) = 210: 210 is a triangular number which is the product of two consecutive numbers: 14 * 15. - Shyam Sunder Gupta, Oct 26 2002
Coefficients of the series giving the best rational approximations to sqrt(8). The partial sums of the series 3 - 1/a(1) - 1/a(2) - 1/a(3) - ... give the best rational approximations to sqrt(8) = 2 sqrt(2), which constitute every second convergent of the continued fraction. The corresponding continued fractions are [2; 1, 4, 1], [2; 1, 4, 1, 4, 1], [2; 1, 4, 1, 4, 1, 4, 1], [2; 1, 4, 1, 4, 1, 4, 1, 4, 1] and so forth. - Gene Ward Smith, Sep 30 2006
This sequence satisfy the same recurrence as A165518. - Ant King, Dec 13 2010
Intersection of A000217 and A002378.
This is the sequence of areas, x(n)*y(n)/2, of the ordered Pythagorean triples (x(n), y(n) = x(n) + 1,z(n)) with x(0) = 0, y(0) = 1, z(0) = 1, a(0) = 0 and x(1) = 3, y(1) = 4, z(1) = 5, a(1) = 6. - George F. Johnson, Aug 20 2012

Crossrefs

Programs

  • GAP
    List([0..20], n-> (Lucas(2,-1, 4*n+2)[2] -6)/32 ); # G. C. Greubel, Jan 13 2020
  • Haskell
    a029549 n = a029549_list !! n
    a029549_list = [0,6,210] ++
       zipWith (+) a029549_list
                   (map (* 35) $ tail delta)
       where delta = zipWith (-) (tail a029549_list) a029549_list
    -- Reinhard Zumkeller, Sep 19 2011
    
  • Macsyma
    (makelist(binom(n,2),n,1,999999),intersection(%%,2*%%)) /* Bill Gosper, Feb 07 2010 */
    
  • Magma
    R:=PowerSeriesRing(Integers(), 25); [0] cat Coefficients(R!(6/(1-35*x+35*x^2-x^3))); // G. C. Greubel, Jul 15 2018
    
  • Maple
    A029549 := proc(n)
        option remember;
        if n <= 1 then
            op(n+1,[0,6]) ;
        else
            34*procname(n-1)-procname(n-2)+6 ;
        end if;
    end proc: # R. J. Mathar, Feb 05 2016
  • Mathematica
    Table[Floor[(Sqrt[2] + 1)^(4n + 2)/32], {n, 0, 20} ] (* Original program from author, corrected by Ray Chandler, Jul 09 2015 *)
    CoefficientList[Series[6/(1 - 35x + 35x^2 - x^3), {x, 0, 14}], x]
    Intersection[#, 2#] &@ Table[Binomial[n, 2], {n, 999999}] (* Bill Gosper, Feb 07 2010 *)
    LinearRecurrence[{35, -35, 1}, {0, 6, 210}, 20] (* Harvey P. Dale, Jun 06 2011 *)
    (LucasL[4Range[20] - 2, 2] -6)/32 (* G. C. Greubel, Jan 13 2020 *)
  • PARI
    concat(0,Vec(6/(1-35*x+35*x^2-x^3)+O(x^25))) \\ Charles R Greathouse IV, Jun 13 2013
    
  • Sage
    [(lucas_number2(4*n+2, 2, -1) -6)/32 for n in (0..20)] # G. C. Greubel, Jan 13 2020
    
  • Scala
    val triNums = (0 to 39999).map(n => (n * n + n)/2)
    triNums.filter( % 2 == 0).filter(n => (triNums.contains(n/2))) // _Alonso del Arte, Jan 12 2020
    

Formula

G.f.: 6*x/(1 - 35*x + 35*x^2 - x^3) = 6*x /( (1-x)*(1 - 34*x + x^2) ).
a(n) = 6*A029546(n-1) = 2*A075528(n).
a(n) = -3/16 + ((3+2*sqrt(2))/32) *(17 + 12*sqrt(2))^n + ((3-2*sqrt(2))/32) *(17 - 12*sqrt(2))^n. - Gene Ward Smith, Sep 30 2006
From Bill Gosper, Feb 07 2010: (Start)
a(n) = (cosh((4*n + 2)*log(1 + sqrt(2))) - 3)/16.
a(n) = binomial(A001652(n) + 1, 2) = 2*binomial(A053141(n) + 1, 2). (End)
a(n) = binomial(A046090(n), 2) = A000217(A001652(n)). - Mitch Harris, Apr 19 2007, R. J. Mathar, Jun 26 2009
a(n) = ceiling((3 + 2*sqrt(2))^(2n + 1) - 6)/32 = floor((1/32) (1+sqrt(2))^(4n+2)). - Ant King, Dec 13 2010
Sum_{n >= 1} 1/a(n) = 3 - 2*sqrt(2) = A157259 - 4. - Ant King, Dec 13 2010
a(n) = a(n - 1) + A001109(2n). - Charlie Marion, Feb 10 2011
a(n+2) = 34*a(n + 1) - a(n) + 6. - Charlie Marion, Feb 11 2011
From George F. Johnson, Aug 20 2012: (Start)
a(n) = ((3 + 2*sqrt(2))^(2*n + 1) + (3 - 2*sqrt(2))^(2*n + 1) - 6)/32.
8*a(n) + 1 = (A002315(n))^2, 4*a(n) + 1 = (A000129(2*n + 1))^2, 32*a(n)^2 + 12*a(n) + 1 are perfect squares.
a(n + 1) = 17*a(n) + 3 + 3*sqrt((8*a(n) + 1)*(4*a(n) + 1)).
a(n - 1) = 17*a(n) + 3 - 3*sqrt((8*a(n) + 1)*(4*a(n) + 1)).
a(n - 1)*a(n + 1) = a(n)*(a(n) - 6), a(n) = A096979(2*n).
a(n) = (1/2)*A084159(n)*A046729(n) = (1/2)*A001652(n)*A046090(n).
Limit_{n->infinity} a(n)/a(n - 1) = 17 + 12*sqrt(2).
Limit_{n->infinity} a(n)/a(n - 2) = (17 + 12*sqrt(2))^2 = 577 + 408*sqrt(2).
Limit_{n->infinity} a(n)/a(n - r) = (17 + 12*sqrt(2))^r.
Limit_{n->infinity} a(n - r)/a(n) = (17 + 12*sqrt(2))^(-r) = (17 - 12*sqrt(2))^r. (End)
a(n) = 3 * T( b(n) ) + (2*b(n) + 1)*sqrt( T( b(n) ) ) where b(n) = A001108(n) (indices of the square triangular numbers), T(n) = A000217(n) (the n-th triangular number). - Dimitri Papadopoulos, Jul 07 2017
a(n) = (Pell(2*n + 1)^2 - 1)/4 = (Q(4*n + 2) - 6)/32, where Q(n) are the Pell-Lucas numbers (A002203). - G. C. Greubel, Jan 13 2020
a(n) = A002378(A011900(n)-1) = A002378(A053141(n)). - Pontus von Brömssen, Sep 11 2024

Extensions

Additional comments from Christian G. Bower, Sep 19 2002; T. D. Noe, Nov 07 2006; and others
Edited by N. J. A. Sloane, Apr 18 2007, following suggestions from Andrew S. Plewe and Tanya Khovanova

A076139 Triangular numbers that are one-third of another triangular number: T(m) such that 3*T(m) = T(k) for some k.

Original entry on oeis.org

0, 1, 15, 210, 2926, 40755, 567645, 7906276, 110120220, 1533776805, 21362755051, 297544793910, 4144264359690, 57722156241751, 803965923024825, 11197800766105800, 155965244802456376, 2172315626468283465, 30256453525753512135, 421418033734080886426
Offset: 0

Views

Author

Bruce Corrigan (scentman(AT)myfamily.com), Oct 31 2002

Keywords

Comments

Both triangular and generalized pentagonal numbers: intersection of A000217 and A001318. - Vladeta Jovovic, Aug 29 2004
Partial sums of Chebyshev polynomials S(n,14).

Examples

			G.f. = x + 15*x^2 + 210*x^3 + 2926*x^4 + 40755*x^5 + 567645*x^6 + ...
a(3)=210=T(20) and 3*210=630=T(35).
		

Crossrefs

The m values are in A061278, the k values are in A001571.
Cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).

Programs

  • Magma
    [(Evaluate(ChebyshevU(n+1), 7) - Evaluate(ChebyshevU(n), 7) - 1)/12 : n in [0..30]]; // G. C. Greubel, Feb 03 2022
  • Mathematica
    a[n_] := a[n] = 14*a[n-1] - a[n-2] + 1; a[0] = 0; a[1] = 1; Table[ a[n], {n, 0, 17}] (* Jean-François Alcover, Dec 15 2011, after given formula *)
  • PARI
    {a(n) = polchebyshev( n, 2, 7) / 14 + polchebyshev( n, 1, 7)/ 84 - 1 / 12}; /* Michael Somos, Jun 16 2011 */
    
  • PARI
    concat(0, Vec(-x/((x-1)*(x^2-14*x+1)) + O(x^100))) \\ Colin Barker, May 15 2015
    
  • Sage
    [(chebyshev_U(n,7) - chebyshev_U(n-1,7) - 1)/12 for n in (0..30)] # G. C. Greubel, Feb 03 2022
    

Formula

G.f.: x / ((1 - x) * (1 - 14*x +x^2)).
a(n+1) = Sum_{k=0..n} S(k, 14), n >= 0, where S(k, 14) = U(k, 7) = A007655(k+2).
a(n+1) = (S(n+1, 14) - S(n, 14) - 1)/12, n >= 0.
a(n) = 14 * a(n-1) - a(n-2) + 1. a(0)=0, a(1)=1.
a(-n) = a(n-1).
a(n) = A061278(n)*(A061278(n)+1)/2.
a(n) = (1/288)*(-24 + (12-6*sqrt(3))*(7-4*sqrt(3))^n + (12+6*sqrt(3))*(7+4*sqrt(3))^n).
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3) with a(0)=0, a(1)=1, a(2)=15. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
a(2*n) = A108281(n + 1). a(2*n + 1) = A014979(n + 2). - Michael Somos, Jun 16 2011
a(n) = (1/2)*A217855(n) = (1/3)*A076140(n) = (1/4)*A123480(n) = (1/8)*A045899(n). - Peter Bala, Dec 31 2012
a(n) = A001353(n) * A001353(n-1) / 4. - Richard R. Forberg, Aug 26 2013
a(n) = ((2+sqrt(3))^(2*n+1) + (2-sqrt(3))^(2*n+1))/48 - 1/12. - Vladimir Pletser, Jan 15 2021

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
Chebyshev comments from Wolfdieter Lang, Aug 31 2004

A076140 Triangular numbers T(k) that are three times another triangular number: T(k) such that T(k) = 3*T(m) for some m.

Original entry on oeis.org

0, 3, 45, 630, 8778, 122265, 1702935, 23718828, 330360660, 4601330415, 64088265153, 892634381730, 12432793079070, 173166468725253, 2411897769074475, 33593402298317400, 467895734407369128, 6516946879404850395, 90769360577260536405, 1264254101202242659278
Offset: 0

Views

Author

Bruce Corrigan (scentman(AT)myfamily.com), Oct 31 2002

Keywords

Comments

This is a subsequence of A045943. - Michel Marcus, Apr 26 2014

Examples

			a(3) = 630 because 630 = T(35) and 630/3 = 210 = T(20).
		

Crossrefs

Subsequence of A000217.
The m values are in A061278 and the k values are in A001571.
Cf. A045943.

Programs

  • Mathematica
    Join[{0}, CoefficientList[Series[3/(1 - 15x + 15x^2 - x^3), {x, 0, 20}], x]]  (* Harvey P. Dale, Apr 02 2011 *)
    triNums = Accumulate[Range[0, 9999]]; Select[triNums, MemberQ[triNums, #/3] &] (* Alonso del Arte, Mar 24 2020 *)
  • PARI
    concat(0, Vec(-3*x/((x-1)*(x^2-14*x+1)) + O(x^100))) \\ Colin Barker, May 15 2015

Formula

a(n) = (3/288)*(-24 + (12 - 6*sqrt(3))*(7 - 4*sqrt(3))^n + (12 + 6*sqrt(3))*(7 + 4*sqrt(3))^n).
From Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002: (Start)
a(0) = 0, a(1) = 3, a(2) = 45; a(n) = 15*(a(n-1) -a (n-2)) + a(n-3) for n >= 3.
G.f.: (3*x)/(1 - 15*x + 15*x^2 - x^3). (End)
a(n) = 3*A076139(n) = 3/2*A217855(n) = 3/4*A123480(n) = 3/8*A045899(n). - Peter Bala, Dec 31 2012
a(0) = 0, a(n) = 14 * a(n - 1) - a(n - 2) + 3 for n > 0. - Vladimir Pletser, Mar 23 2020
a(n) = ((2+sqrt(3))*(7+4*sqrt(3))^n + ((2-sqrt(3))*(7-4*sqrt(3))^n))/16 - 1/4 = ((2+sqrt(3))^(2n+1) + ((2-sqrt(3))^(2n+1)))/16 - 1/4. - Vladimir Pletser, Jan 15 2021

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002

A045899 Numbers k such that k+1 and 3*k+1 are perfect squares.

Original entry on oeis.org

0, 8, 120, 1680, 23408, 326040, 4541160, 63250208, 880961760, 12270214440, 170902040408, 2380358351280, 33154114877520, 461777249934008, 6431727384198600, 89582406128846400, 1247721958419651008, 17378525011746267720, 242051628206028097080, 3371344269872647091408
Offset: 1

Views

Author

Andrej Dujella (duje(AT)math.hr)

Keywords

Comments

Essentially the same as A051047.
It appears that a(n) = A046175(n)-A046174(n), that is, the triangular index of the n-th pentagonal triangular number minus its pentagonal index. - Jonathan Vos Post, Feb 28 2011
Sequence lists the nonnegative x solutions when (x + 1)*(3*x + 1) is a square. Positive x solutions when (x - 1)*(3*x - 1) is a square are in A011922. - Bruno Berselli, Feb 20 2018

Crossrefs

Programs

  • Mathematica
    f[n_] := FullSimplify[((Sqrt[3] + 2)*(7 + 4*Sqrt[3])^n - (Sqrt[3] - 2) (7 - 4 Sqrt[3])^n - 4)/6]; Array[f, 18, 0] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Apr 23 2006 *)
    Rest[CoefficientList[Series[-8*x^2/((x - 1)*(x^2 - 14*x + 1)), {x,0,50}], x]] (* G. C. Greubel, Jun 07 2017 *)
    LinearRecurrence[{15,-15,1},{0,8,120},20] (* Harvey P. Dale, Jul 14 2024 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(-8*x^2/((x - 1)*(x^2 - 14*x + 1)))) \\ G. C. Greubel, Jun 07 2017

Formula

a(n) = A046184(n+1) - 1.
a(n) = 14*a(n-1) - a(n-2) + 8.
a(n) = ((2 + sqrt(3))*(7 + 4*sqrt(3))^n + (2 - sqrt(3))*(7 - 4*sqrt(3))^n - 4)/6. - Joseph Biberstine (jrbibers(AT)indiana.edu), Apr 23 2006
a(n) = 8*A076139(n-1) = 4*A217855(n-1) = 2*A123480(n-1) = 8/3*A076140(n-1). - Peter Bala, Dec 31 2012
From Colin Barker, Jul 30 2013: (Start)
G.f.: -8*x^2 / ((x - 1)*(x^2 - 14*x + 1)).
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3). (End)
E.g.f.: (-4*exp(x) + (2 + sqrt(3))*exp((7-4*sqrt(3))*x) + (2 - sqrt(3))*exp((7+4*sqrt(3))*x))/6. - Ilya Gutkovskiy, Apr 28 2016

A217855 Numbers m such that 16*m*(3*m+1)+1 is a square.

Original entry on oeis.org

0, 2, 30, 420, 5852, 81510, 1135290, 15812552, 220240440, 3067553610, 42725510102, 595089587820, 8288528719380, 115444312483502, 1607931846049650, 22395601532211600, 311930489604912752, 4344631252936566930, 60512907051507024270, 842836067468161772852
Offset: 0

Views

Author

Arnaldo Vicentini, Oct 12 2012

Keywords

Comments

If S(h) is the sum of the squares of the integers from 1 to h, then S(h)/h = (h+1)*(2*h+1)/6. If S(h)/h is a square, then h+1 is even and 2*h+1 is a multiple of 3, so that (h+1)/2 and (2*h+1)/3 must be odd squares. The numbers h that satisfy this condition are in A084231. Let h = 1+24*k+72*k^2; for any natural k we have (h+1)/2 = (6*k+1)^2, but only if 16*k*(3*k+1)+1 is a square also (2*h+1)/3 is a square. Searching what integer numbers k satisfy this condition leads to this sequence.

Examples

			a(0) = ((2+sqrt(3))^1+(2-sqrt(3))^1-4)/24 = 0,
a(1) = ((2+sqrt(3))^3+(2-sqrt(3))^3-4)/24 = 2,
a(2) = ((2+sqrt(3))^5+(2-sqrt(3))^5-4)/24 = 30;
a(2) = 14*a(1)-a(0)+2 = 30,
a(3) = 14*a(2)-a(1)+2 = 420,
a(4) = 14*a(3)-a(2)+2 = 5852;
a(3) = 15*a(2)-15*a(1)+a(0) = 420,
a(4) = 15*a(3)-15*a(2)+a(1) = 5852.
Regarding to the comment, a(3) = 420 and so 72*a(3)^2+24*a(3)+1 = A084231(4) = 12710881, therefore Sum_{i=1..12710881} i^2/12710881 = 7338631^2 = A084232(3)^2. - _Bruno Berselli_, Oct 17 2012
		

Crossrefs

Programs

  • Magma
    m:=19; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(2/((1-x)*(1-14*x+x^2)))); // Bruno Berselli, Oct 16 2012
    
  • Mathematica
    LinearRecurrence[{15, -15, 1}, {0, 2, 30}, 20] (* Bruno Berselli, Oct 16 2012 *)
  • Maxima
    makelist(expand(((2+sqrt(3))^(2*n+1)+(2-sqrt(3))^(2*n+1)-4)/24), n, 0, 19); /* Bruno Berselli, Oct 16 2012 */
    
  • PARI
    a=vector(20); a[1]=0; a[2]=2; a[3]=30; for(i=4, #a, a[i]=15*a[i-1]-15*a[i-2]+a[i-3]); a \\ Bruno Berselli, Oct 16 2012

Formula

a(n) = ((2 + sqrt(3))^(2*n + 1) + (2 - sqrt(3))^(2*n + 1) - 4)/24.
a(n) = (cosh((2*n + 1)*log(2 + sqrt(3))) - 2)/12.
a(n) = a(-n-1) = 15*a(n-1) - 15*a(n-2) + a(n-3).
a(n) = 14*a(n-1) - a(n-2) + 2.
a(n) = 2*A076139(n).
72*a(n)^2 + 24*a(n)+1 = A084231(n+1).
16*a(n)*(3*a(n) + 1) + 1 = A028230(n+1)^2.
G.f.: 2*x/((1 - x)*(1 - 14*x + x^2)). - Bruno Berselli, Oct 16 2012
a(n) = 2*A076139(n) = 1/2*A123480(n) = 1/4*A045899(n) = 2/3*A076140(n). - Peter Bala, Dec 31 2012

A123479 Coefficients of series giving the best rational approximations to sqrt(6).

Original entry on oeis.org

20, 1980, 194040, 19013960, 1863174060, 182572043940, 17890197132080, 1753056746899920, 171781670999060100, 16832850701160989900, 1649447587042777950120, 161629030679491078121880, 15837995559003082877994140, 1551961935751622630965303860
Offset: 1

Views

Author

Gene Ward Smith, Sep 28 2006

Keywords

Comments

The partial sums of the series 5/2 - 1/a(1) - 1/a(2) - 1/a(3) - ... give the best rational approximations to sqrt(6), which constitute every second convergent of the continued fraction. The corresponding continued fractions are [2;2], [2;2,4,2], [2;2,4,2,4,2], [2;2,4,2,4,2,4,2] and so forth.
Sequence of numbers x=a(n) such 4*x+1 and 6*x+1 are both square, and their square roots are A138288(n) and A054320(n). - Paul Cleary, Jun 23 2014

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{99,-99,1},{0,20,1980},{2, 25}] (* Paul Cleary, Jun 23 2014 *)
  • PARI
    Vec(-20*x/((x-1)*(x^2-98*x+1)) + O(x^100)) \\ Colin Barker, Jun 23 2014

Formula

a(n+3) = 99*a(n+2) - 99*a(n+1) + a(n).
a(n) = -5/24 + (( + 2*6^(1/2))/48)*(49 + 20*6^(1/2))^n + ((5 - 2*6^(1/2))/48)*(49 - 20*6^(1/2))^n.
G.f.: -20*x / ((x-1)*(x^2-98*x+1)). - Colin Barker, Jun 23 2014

Extensions

More terms from Colin Barker, Jun 23 2014

A221075 Simple continued fraction expansion of an infinite product.

Original entry on oeis.org

2, 12, 1, 24, 1, 192, 1, 360, 1, 2700, 1, 5040, 1, 37632, 1, 70224, 1, 524172, 1, 978120, 1, 7300800, 1, 13623480, 1, 101687052, 1, 189750624, 1, 1416317952, 1, 2642885280, 1, 19726764300, 1, 36810643320, 1
Offset: 0

Views

Author

Peter Bala, Jan 06 2013

Keywords

Comments

Simple continued fraction expansion of product {n >= 0} {1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+3)}/{1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+1)} at m = 4. For other cases see A221073 (m = 2), A221074 (m = 3) and A221076 (m = 5).
If we denote the present sequence by [2; 12, 1, c(3), 1, c(4), 1, ...] then for k >= 1 the sequence [1; c(2*k+1), 1, c(2*(2*k+1)), 1, c(3*(2*k+1)), 1, ...] gives the simple continued fraction expansion of product {n >= 0} [1-2*{(2-sqrt(3))^(2*k+1)}^(4*n+3)]/[1 - 2*{(2-sqrt(3))^(2*k+1)}^(4*n+1)]. An example is given below

Examples

			Product {n >= 0} {1 - 2*(2 - sqrt(3))^(4*n+3)}/{1 - 2*(2 - sqrt(3))^(4*n+1)} = 2.07715 13807 08976 70415 ...
= 2 + 1/(12 + 1/(1 + 1/(24 + 1/(1 + 1/(192 + 1/(1 + 1/(360 + ...))))))).
Since (2 - sqrt(3))^3 = 26 - 15*sqrt(3) we have the following simple continued fraction expansion:
product {n >= 0} {1 - 2*(26 - 15*sqrt(3))^(4*n+3)}/{1 - 2*(26 - 15*sqrt(3))^(4*n+1)} = 1.04000 05921 62729 43797 ... = 1 + 1/(24 + 1/(1 + 1/(2700 + 1/(1 + 1/(70224 + 1/(1 + 1/(7300800 + ...))))))).
		

Crossrefs

Formula

a(2*n) = 1 for n >= 1. For n >= 1 we have
a(4*n - 3) = (2 + sqrt(3))^(2*n) + (2 - sqrt(3))^(2*n) - 2;
a(4*n - 1) = 1/2*{(2 + sqrt(3) )^(2*n + 1) + (2 - sqrt(3))^(2*n + 1)} - 2.
a(4*n - 3) = 12*A098301(n) = 12*A001353(n)^2 = 4*A007654(n);
a(4*n - 1) = 24*A076139(n) = 12*A217855 = 8*A076140(n) = 6*A123480(n) = 3*A045899(n).
O.g.f.: 2 + x^2/(1 - x^2) + 12*x*(1 + x^2)^2/(1 - 15*x^4 + 15*x^8 - x^12) = 2 + 12*x + x^2 + 24*x^3 + x^4 + 192*x^5 + ....
O.g.f.: (x^10-2*x^8-14*x^6+28*x^4-12*x^3+x^2-12*x-2) / ((x-1)*(x+1)*(x^4-4*x^2+1)*(x^4+4*x^2+1)). - Colin Barker, Jan 10 2014

A123478 Coefficients of series giving the best rational approximations to sqrt(7).

Original entry on oeis.org

48, 12240, 3108960, 789663648, 200571457680, 50944360587120, 12939667017670848, 3286624478127808320, 834789677777445642480, 212033291530993065381648, 53855621259194461161296160, 13679115766543862141903843040, 3474441549080881789582414836048
Offset: 1

Views

Author

Gene Ward Smith, Sep 28 2006

Keywords

Comments

The partial sums of the series 8/3 - 1/a(1) - 1/a(2) - 1/a(3) - ... give the best rational approximations to sqrt(7), which constitute every fourth convergent of the continued fraction. The corresponding continued fractions are [2;1,1,1], [2;1,1,1,4,1,1,1], [2;1,1,1,4,1,1,1,4,1,1,1] and so forth.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{255,-255,1},{48,12240,3108960},30] (* Harvey P. Dale, Nov 20 2016 *)
  • PARI
    Vec(-48*x/((x-1)*(x^2-254*x+1)) + O(x^100)) \\ Colin Barker, Jun 23 2014

Formula

a(n+3) = 255 a(n+2) - 255 a(n+1) + a(n).
a(n) = -4/21 + (2/21+1/28*7^(1/2))*(127+48*7^(1/2))^n + (2/21-1/28*7^(1/2))*(127-48*7^(1/2))^n.
G.f.: -48*x / ((x-1)*(x^2-254*x+1)). - Colin Barker, Jun 23 2014

Extensions

More terms from Colin Barker, Jun 23 2014

A123482 Coefficients of the series giving the best rational approximations to sqrt(11).

Original entry on oeis.org

60, 23940, 9528120, 3792167880, 1509273288180, 600686976527820, 239071907384784240, 95150018452167599760, 37869468272055319920300, 15071953222259565160679700, 5998599512991034878630600360, 2387427534217209622129818263640, 950190160018936438572789038328420
Offset: 1

Views

Author

Gene Ward Smith, Oct 02 2006

Keywords

Comments

The partial sums of the series 10/3 - 1/a(1) - 1/a(2) - 1/a(3) - ... give the best rational approximations to sqrt(11), which constitute every second convergent of the continued fraction. The corresponding continued fractions are [3;3,6,3], [3;3,6,3,6,3], [3;3,6,3,6,3,6,3] and so forth.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-60*x/((x - 1)*(x^2 - 398*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 13 2017 *)
  • PARI
    Vec(-60*x/((x-1)*(x^2-398*x+1)) + O(x^100)) \\ Colin Barker, Jun 23 2014

Formula

a(n+3) = 399*a(n+2) - 399*a(n+1) + a(n).
a(n) = -5/33 + (5/66 + 1/44*11^(1/2))*(199 + 60*11^(1/2))^n + (5/66 - 1/44*11^(1/2))*(199 - 60*11^(1/2))^n.
G.f.: -60*x / ((x-1)*(x^2-398*x+1)). - Colin Barker, Jun 23 2014

Extensions

More terms from Colin Barker, Jun 23 2014
Showing 1-9 of 9 results.