cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A001570 Numbers k such that k^2 is centered hexagonal.

Original entry on oeis.org

1, 13, 181, 2521, 35113, 489061, 6811741, 94875313, 1321442641, 18405321661, 256353060613, 3570537526921, 49731172316281, 692665874901013, 9647591076297901, 134373609193269601, 1871582937629476513, 26067787517619401581, 363077442309042145621
Offset: 1

Views

Author

Keywords

Comments

Chebyshev T-sequence with Diophantine property. - Wolfdieter Lang, Nov 29 2002
a(n) = L(n,14), where L is defined as in A108299; see also A028230 for L(n,-14). - Reinhard Zumkeller, Jun 01 2005
Numbers x satisfying x^2 + y^3 = (y+1)^3. Corresponding y given by A001921(n)={A028230(n)-1}/2. - Lekraj Beedassy, Jul 21 2006
Mod[ a(n), 12 ] = 1. (a(n) - 1)/12 = A076139(n) = Triangular numbers that are one-third of another triangular number. (a(n) - 1)/4 = A076140(n) = Triangular numbers T(k) that are three times another triangular number. - Alexander Adamchuk, Apr 06 2007
Also numbers n such that RootMeanSquare(1,3,...,2*n-1) is an integer. - Ctibor O. Zizka, Sep 04 2008
a(n), with n>1, is the length of the cevian of equilateral triangle whose side length is the term b(n) of the sequence A028230. This cevian divides the side (2*x+1) of the triangle in two integer segments x and x+1. - Giacomo Fecondo, Oct 09 2010
For n>=2, a(n) equals the permanent of the (2n-2)X(2n-2) tridiagonal matrix with sqrt(12)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
Beal's conjecture would imply that set intersection of this sequence with the perfect powers (A001597) equals {1}. In other words, existence of a nontrivial perfect power in this sequence would disprove Beal's conjecture. - Max Alekseyev, Mar 15 2015
Numbers n such that there exists positive x with x^2 + x + 1 = 3n^2. - Jeffrey Shallit, Dec 11 2017
Given by the denominators of the continued fractions [1,(1,2)^i,3,(1,2)^{i-1},1]. - Jeffrey Shallit, Dec 11 2017
A near-isosceles integer-sided triangle with an angle of 2*Pi/3 is a triangle whose sides (a, a+1, c) satisfy Diophantine equation (a+1)^3 - a^3 = c^2. For n >= 2, the largest side c is given by a(n) while smallest and middle sides (a, a+1) = (A001921(n-1), A001922(n-1)) (see Julia link). - Bernard Schott, Nov 20 2022

Examples

			G.f. = x + 13*x^2 + 181*x^3 + 2521*x^4 + 35113*x^5 + 489061*x^6 + 6811741*x^7 + ...
		

References

  • E.-A. Majol, Note #2228, L'Intermédiaire des Mathématiciens, 9 (1902), pp. 183-185. - N. J. A. Sloane, Mar 03 2022
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisection of A003500/4. Cf. A006051, A001921, A001922.
One half of odd part of bisection of A001075. First differences of A007655.
Cf. A077417 with companion A077416.
Row 14 of array A094954.
A122571 is another version of the same sequence.
Row 2 of array A188646.
Cf. similar sequences listed in A238379.
Cf. A028231, which gives the corresponding values of x in 3n^2 = x^2 + x + 1.
Similar sequences of the type cosh((2*m+1)*arccosh(k))/k are listed in A302329. This is the case k=2.

Programs

  • Magma
    [((2 + Sqrt(3))^(2*n - 1) + (2 - Sqrt(3))^(2*n - 1))/4: n in [1..50]]; // G. C. Greubel, Nov 04 2017
  • Maple
    A001570:=-(-1+z)/(1-14*z+z**2); # Simon Plouffe in his 1992 dissertation.
  • Mathematica
    NestList[3 + 7*#1 + 4*Sqrt[1 + 3*#1 + 3*#1^2] &, 0, 24] (* Zak Seidov, May 06 2007 *)
    f[n_] := Simplify[(2 + Sqrt@3)^(2 n - 1) + (2 - Sqrt@3)^(2 n - 1)]/4; Array[f, 19] (* Robert G. Wilson v, Oct 28 2010 *)
    a[c_, n_] := Module[{},
       p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
       d := Denominator[Convergents[Sqrt[c], n p]];
       t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
       Return[t];
      ] (* Complement of A041017 *)
    a[12, 20] (* Gerry Martens, Jun 07 2015 *)
    LinearRecurrence[{14, -1}, {1, 13}, 19] (* Jean-François Alcover, Sep 26 2017 *)
    CoefficientList[Series[x (1-x)/(1-14x+x^2),{x,0,20}],x] (* Harvey P. Dale, Sep 18 2024 *)
  • PARI
    {a(n) = real( (2 + quadgen( 12)) ^ (2*n - 1)) / 2}; /* Michael Somos, Feb 15 2011 */
    

Formula

a(n) = ((2 + sqrt(3))^(2*n - 1) + (2 - sqrt(3))^(2*n - 1)) / 4. - Michael Somos, Feb 15 2011
G.f.: x * (1 - x) / (1 -14*x + x^2). - Michael Somos, Feb 15 2011
Let q(n, x) = Sum_{i=0, n} x^(n-i)*binomial(2*n-i, i) then a(n) = q(n, 12). - Benoit Cloitre, Dec 10 2002
a(n) = S(n, 14) - S(n-1, 14) = T(2*n+1, 2)/2 with S(n, x) := U(n, x/2), resp. T(n, x), Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120. S(-1, x)=0, S(n, 14)=A007655(n+1) and T(n, 2)=A001075(n). - Wolfdieter Lang, Nov 29 2002
a(n) = A001075(n)*A001075(n+1) - 1 and thus (a(n)+1)^6 has divisors A001075(n)^6 and A001075(n+1)^6 congruent to -1 modulo a(n) (cf. A350916). - Max Alekseyev, Jan 23 2022
4*a(n)^2 - 3*b(n)^2 = 1 with b(n)=A028230(n+1), n>=0.
a(n)*a(n+3) = 168 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004
a(n) = 14*a(n-1) - a(n-2), a(0) = a(1) = 1. a(1 - n) = a(n) (compare A122571).
a(n) = 12*A076139(n) + 1 = 4*A076140(n) + 1. - Alexander Adamchuk, Apr 06 2007
a(n) = (1/12)*((7-4*sqrt(3))^n*(3-2*sqrt(3))+(3+2*sqrt(3))*(7+4*sqrt(3))^n -6). - Zak Seidov, May 06 2007
a(n) = A102871(n)^2+(A102871(n)-1)^2; sum of consecutive squares. E.g. a(4)=36^2+35^2. - Mason Withers (mwithers(AT)semprautilities.com), Jan 26 2008
a(n) = sqrt((3*A028230(n+1)^2 + 1)/4).
a(n) = A098301(n+1) - A001353(n)*A001835(n).
a(n) = A000217(A001571(n-1)) + A000217(A133161(n)), n>=1. - Ivan N. Ianakiev, Sep 24 2013
a(n)^2 = A001922(n-1)^3 - A001921(n-1)^3, for n >= 1. - Bernard Schott, Nov 20 2022
a(n) = 2^(2*n-3)*Product_{k=1..2*n-1} (2 - sin(2*Pi*k/(2*n-1))). Michael Somos, Dec 18 2022
a(n) = A003154(A101265(n)). - Andrea Pinos, Dec 19 2022

A076139 Triangular numbers that are one-third of another triangular number: T(m) such that 3*T(m) = T(k) for some k.

Original entry on oeis.org

0, 1, 15, 210, 2926, 40755, 567645, 7906276, 110120220, 1533776805, 21362755051, 297544793910, 4144264359690, 57722156241751, 803965923024825, 11197800766105800, 155965244802456376, 2172315626468283465, 30256453525753512135, 421418033734080886426
Offset: 0

Views

Author

Bruce Corrigan (scentman(AT)myfamily.com), Oct 31 2002

Keywords

Comments

Both triangular and generalized pentagonal numbers: intersection of A000217 and A001318. - Vladeta Jovovic, Aug 29 2004
Partial sums of Chebyshev polynomials S(n,14).

Examples

			G.f. = x + 15*x^2 + 210*x^3 + 2926*x^4 + 40755*x^5 + 567645*x^6 + ...
a(3)=210=T(20) and 3*210=630=T(35).
		

Crossrefs

The m values are in A061278, the k values are in A001571.
Cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).

Programs

  • Magma
    [(Evaluate(ChebyshevU(n+1), 7) - Evaluate(ChebyshevU(n), 7) - 1)/12 : n in [0..30]]; // G. C. Greubel, Feb 03 2022
  • Mathematica
    a[n_] := a[n] = 14*a[n-1] - a[n-2] + 1; a[0] = 0; a[1] = 1; Table[ a[n], {n, 0, 17}] (* Jean-François Alcover, Dec 15 2011, after given formula *)
  • PARI
    {a(n) = polchebyshev( n, 2, 7) / 14 + polchebyshev( n, 1, 7)/ 84 - 1 / 12}; /* Michael Somos, Jun 16 2011 */
    
  • PARI
    concat(0, Vec(-x/((x-1)*(x^2-14*x+1)) + O(x^100))) \\ Colin Barker, May 15 2015
    
  • Sage
    [(chebyshev_U(n,7) - chebyshev_U(n-1,7) - 1)/12 for n in (0..30)] # G. C. Greubel, Feb 03 2022
    

Formula

G.f.: x / ((1 - x) * (1 - 14*x +x^2)).
a(n+1) = Sum_{k=0..n} S(k, 14), n >= 0, where S(k, 14) = U(k, 7) = A007655(k+2).
a(n+1) = (S(n+1, 14) - S(n, 14) - 1)/12, n >= 0.
a(n) = 14 * a(n-1) - a(n-2) + 1. a(0)=0, a(1)=1.
a(-n) = a(n-1).
a(n) = A061278(n)*(A061278(n)+1)/2.
a(n) = (1/288)*(-24 + (12-6*sqrt(3))*(7-4*sqrt(3))^n + (12+6*sqrt(3))*(7+4*sqrt(3))^n).
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3) with a(0)=0, a(1)=1, a(2)=15. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
a(2*n) = A108281(n + 1). a(2*n + 1) = A014979(n + 2). - Michael Somos, Jun 16 2011
a(n) = (1/2)*A217855(n) = (1/3)*A076140(n) = (1/4)*A123480(n) = (1/8)*A045899(n). - Peter Bala, Dec 31 2012
a(n) = A001353(n) * A001353(n-1) / 4. - Richard R. Forberg, Aug 26 2013
a(n) = ((2+sqrt(3))^(2*n+1) + (2-sqrt(3))^(2*n+1))/48 - 1/12. - Vladimir Pletser, Jan 15 2021

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
Chebyshev comments from Wolfdieter Lang, Aug 31 2004

A045899 Numbers k such that k+1 and 3*k+1 are perfect squares.

Original entry on oeis.org

0, 8, 120, 1680, 23408, 326040, 4541160, 63250208, 880961760, 12270214440, 170902040408, 2380358351280, 33154114877520, 461777249934008, 6431727384198600, 89582406128846400, 1247721958419651008, 17378525011746267720, 242051628206028097080, 3371344269872647091408
Offset: 1

Views

Author

Andrej Dujella (duje(AT)math.hr)

Keywords

Comments

Essentially the same as A051047.
It appears that a(n) = A046175(n)-A046174(n), that is, the triangular index of the n-th pentagonal triangular number minus its pentagonal index. - Jonathan Vos Post, Feb 28 2011
Sequence lists the nonnegative x solutions when (x + 1)*(3*x + 1) is a square. Positive x solutions when (x - 1)*(3*x - 1) is a square are in A011922. - Bruno Berselli, Feb 20 2018

Crossrefs

Programs

  • Mathematica
    f[n_] := FullSimplify[((Sqrt[3] + 2)*(7 + 4*Sqrt[3])^n - (Sqrt[3] - 2) (7 - 4 Sqrt[3])^n - 4)/6]; Array[f, 18, 0] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Apr 23 2006 *)
    Rest[CoefficientList[Series[-8*x^2/((x - 1)*(x^2 - 14*x + 1)), {x,0,50}], x]] (* G. C. Greubel, Jun 07 2017 *)
    LinearRecurrence[{15,-15,1},{0,8,120},20] (* Harvey P. Dale, Jul 14 2024 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(-8*x^2/((x - 1)*(x^2 - 14*x + 1)))) \\ G. C. Greubel, Jun 07 2017

Formula

a(n) = A046184(n+1) - 1.
a(n) = 14*a(n-1) - a(n-2) + 8.
a(n) = ((2 + sqrt(3))*(7 + 4*sqrt(3))^n + (2 - sqrt(3))*(7 - 4*sqrt(3))^n - 4)/6. - Joseph Biberstine (jrbibers(AT)indiana.edu), Apr 23 2006
a(n) = 8*A076139(n-1) = 4*A217855(n-1) = 2*A123480(n-1) = 8/3*A076140(n-1). - Peter Bala, Dec 31 2012
From Colin Barker, Jul 30 2013: (Start)
G.f.: -8*x^2 / ((x - 1)*(x^2 - 14*x + 1)).
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3). (End)
E.g.f.: (-4*exp(x) + (2 + sqrt(3))*exp((7-4*sqrt(3))*x) + (2 - sqrt(3))*exp((7+4*sqrt(3))*x))/6. - Ilya Gutkovskiy, Apr 28 2016

A123480 Coefficients of the series giving the best rational approximations to sqrt(3).

Original entry on oeis.org

4, 60, 840, 11704, 163020, 2270580, 31625104, 440480880, 6135107220, 85451020204, 1190179175640, 16577057438760, 230888624967004, 3215863692099300, 44791203064423200, 623860979209825504, 8689262505873133860, 121025814103014048540, 1685672134936323545704
Offset: 1

Views

Author

Gene Ward Smith, Sep 28 2006

Keywords

Comments

The partial sums of the series 2 - 1/a(1) - 1/a(2) - 1/a(3) - ... give the best rational approximations to sqrt(3), which constitute every second convergent of the continued fraction. The corresponding continued fractions are [1;1,2,1], [1;1,2,1,2,1], [1;1,2,1,2,1,2,1], [1;1,2,1,2,1,2,1,2,1] and so forth.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-4*x/((x - 1)*(x^2 - 14*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 13 2017 *)
  • PARI
    my(x='x+O('x^50)); Vec(-4*x/((x-1)*(x^2-14*x+1))) \\ G. C. Greubel, Oct 13 2017

Formula

a(n+3) = 15*a(n+2) - 15*a(n+1) + a(n).
a(n) = -1/3 + (1/6 + 1/12*3^(1/2))*(7 + 4*3^(1/2))^n + (1/6 - 1/12*3^(1/2))*(7 - 4*3^(1/2))^n.
a(n) = 4*A076139(n) = 2*A217855(n) = 1/2*A045899(n) = 4/3*A076140(n). - Peter Bala, Dec 31 2012
G.f.: -4*x/((x-1)*(x^2-14*x+1)). - Colin Barker, Jan 20 2013
a(n) = A001353(n)*A001353(n+1). - Antonio Alberto Olivares, Apr 06 2020

A336624 Triangular numbers that are one-eighth of other triangular numbers; T(t) such that 8*T(t)=T(u) for some u where T(k) is the k-th triangular number.

Original entry on oeis.org

0, 15, 66, 17391, 76245, 20069280, 87986745, 23159931810, 101536627566, 26726541239541, 117173180224500, 30842405430498585, 135217748442445515, 35592109140254127630, 156041164529401899891, 41073263105447832786516, 180071368649181350028780, 47398510031577658781511915
Offset: 0

Views

Author

Vladimir Pletser, Aug 07 2020

Keywords

Comments

The triangular numbers T(t) that are one-eighth of other triangular numbers T(u) : T(t)=T(u)/8. The t's are in A336623, the T(u)'s are in A336626 and the u's are in A336625.
Can be defined for negative n by setting a(n) = a(-1-n) for all n in Z.

Examples

			a(1)= 15 is a term because it is triangular and 8*15 = 120 is also triangular.
a(2) = 1154*a(0) - a(-2) + 81 = 0 - 15 + 81 = 66;
a(3) = 1154*a(1) - a(-1) + 81 = 1154*15 - 0 + 81 = 17391, etc.
		

Crossrefs

Programs

  • Maple
    f := gfun:-rectoproc({a(n) = 1154*a(n - 2) - a(n - 4) + 81, a(1) = 15, a(0) = 0, a(-1) = 0, a(-2) = 15}, a(n), remember): map(f, [$ (0 .. 40)])[]; #
  • Mathematica
    LinearRecurrence[{1, 1154, -1154, -1, 1}, {0, 15, 66, 17391, 76245}, 18] (* Amiram Eldar, Aug 08 2020 *)
    FullSimplify[Table[((Sqrt[2] + 1)^(4*n + 2)*(11 - 6*(-1)^n*Sqrt[2]) + (Sqrt[2] - 1)^(4*n + 2)*(11 + 6*(-1)^n*Sqrt[2]) - 18)/256, {n, 0, 17}]] (* Vaclav Kotesovec, Sep 08 2020 *)
    Select[Accumulate[Range[0, 10^6]]/8, OddQ[Sqrt[8 # + 1]] &] (* The program generates the first 8 terms of the sequence. *) (* Harvey P. Dale, Jan 15 2024 *)
  • PARI
    concat(0, Vec(3*x*(5 + 17*x + 5*x^2) / ((1 - x)*(1 - 34*x + x^2)*(1 + 34*x + x^2)) + O(x^40))) \\ Colin Barker, Aug 08 2020

Formula

a(n) = 1154*a(n-2) - a(n-4) + 81, for n>=2 with a(1)=15, a(0)=0, a(-1)=0, a(-2)=15.
a(n) = a(n-1) + 1154*a(n-2) - 1154*a(n-3) - a(n-4) + a(n-5), for n>=3 with a(2)=66, a(1)=15, a(0)=0, a(-1)=0, a(-2)=15.
a(n) = b(n)*(b(n)+1)/2 where b(n) is A336623(n).
G.f.: 3*x*(5 + 17*x + 5*x^2) / ((1 - x)*(1 - 34*x + x^2)*(1 + 34*x + x^2)). - Colin Barker, Aug 08 2020
a(n) = ((sqrt(2) + 1)^(4*n + 2) * (11 - 6*(-1)^n*sqrt(2)) + (sqrt(2) - 1)^(4*n + 2) * (11 + 6*(-1)^n*sqrt(2)) - 18)/256. - Vaclav Kotesovec, Sep 08 2020
From Vladimir Pletser, Feb 21 2021: (Start)
a(n) = ((11 - 6*sqrt(2))*(1 + sqrt(2))^(4n + 2) + (11 + 6*sqrt(2))*(1 - sqrt(2) )^(4n + 2) - 18) / 256 for even n.
a(n) = ((11 + 6*sqrt(2))*(1 + sqrt(2) )^(4n + 2) + (11 - 6*sqrt(2))*(1 - sqrt(2) )^(4n + 2) - 18) / 256 for odd n. (End)
128*a(n) = -9+33*A077420(n)-24*(-1)^n*A046176(n+1). - R. J. Mathar, May 05 2023

A336625 Indices of triangular numbers that are eight times other triangular numbers.

Original entry on oeis.org

0, 15, 32, 527, 1104, 17919, 37520, 608735, 1274592, 20679087, 43298624, 702480239, 1470878640, 23863649055, 49966575152, 810661587647, 1697392676544, 27538630330959, 57661384427360, 935502769664975, 1958789677853712, 31779555538278207, 66541187662598864, 1079569385531794079, 2260441590850507680
Offset: 1

Views

Author

Vladimir Pletser, Aug 13 2020

Keywords

Comments

Second member of the Diophantine pair (b(n), a(n)) that satisfies a(n)^2 + a(n) = 8*(b(n)^2 + b(n)) or T(a(n)) = 8*T(b(n)) where T(x) is the triangular number of x. The T(a)'s are in A336626, the T(b)'s are in A336624 and the b's are in A336623.
Can be defined for negative n by setting a(-n) = -a(n+1) - 1 for all n in Z.

Examples

			a(3) = 34*a(1) - a(-1) + 16 = 0 - (-16) + 16 = 32,
a(4) = 34*a(2) - a(0) + 16 = 34*15 - (-1) + 16 = 527, etc.
		

Crossrefs

Programs

  • Maple
    f := gfun:-rectoproc({a(n) = 34*a(n - 2) - a(n - 4) + 16, a(2) = 15, a(1) = 0, a(0) = -1, a(-1) = -16}, a(n), remember); map(f, [$ (0 .. 1000)]); #
  • Mathematica
    LinearRecurrence[{1, 34, -34, -1, 1}, {0, 15, 32, 527, 1104, 17919}, 29] (* Amiram Eldar, Aug 18 2020 *)
    FullSimplify[Table[((Sqrt[2] + 1)^(2*n + 1) * (3 - Sqrt[2]*(-1)^n) - (Sqrt[2] - 1)^(2*n + 1) * (3 + Sqrt[2]*(-1)^n) - 2)/4, {n, 0, 20}]] (* Vaclav Kotesovec, Sep 08 2020 *)
  • PARI
    concat(0, Vec(x*(15 + 17*x - 15*x^2 - x^3) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)) + O(x^22))) \\ Colin Barker, Aug 14 2020

Formula

a(n) = 34*a(n-2) - a(n-4) + 16, for n>=2 with a(2)=15, a(1)=0, a(0)=-1, a(-1)=-16.
a(n) = a(n-1) + 34*a(n-2) - 34*a(n-3) - a(n-4) + a(n-5), for n>=3 with a(3)=32, a(2)=15, a(1)=0, a(0)=-1, a(-1)=-16.
a(n) = (-1 + sqrt(8*b(n) + 1))/2, where b(n) is A336626(n).
G.f.: x^2*(15 + 17*x - 15*x^2 - x^3) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)). - Colin Barker, Aug 14 2020
a(n) = ((sqrt(2) + 1)^(2*n+1) * (3 - sqrt(2)*(-1)^n) - (sqrt(2) - 1)^(2*n+1) * (3 + sqrt(2)*(-1)^n) - 2)/4. - Vaclav Kotesovec, Sep 08 2020
From Vladimir Pletser, Feb 21 2021: (Start)
a(n) = ((3 - sqrt(2))*(1 + sqrt(2))^(2*n+1) + (3 + sqrt(2))*(1 - sqrt(2))^(2*n+1))/4 - 1/2 for even n.
a(n) = ((3 + sqrt(2))*(1 + sqrt(2))^(2*n+1) + (3 - sqrt(2))*(1 - sqrt(2))^(2*n+1))/4 - 1/2 for odd n. (End)

A217855 Numbers m such that 16*m*(3*m+1)+1 is a square.

Original entry on oeis.org

0, 2, 30, 420, 5852, 81510, 1135290, 15812552, 220240440, 3067553610, 42725510102, 595089587820, 8288528719380, 115444312483502, 1607931846049650, 22395601532211600, 311930489604912752, 4344631252936566930, 60512907051507024270, 842836067468161772852
Offset: 0

Views

Author

Arnaldo Vicentini, Oct 12 2012

Keywords

Comments

If S(h) is the sum of the squares of the integers from 1 to h, then S(h)/h = (h+1)*(2*h+1)/6. If S(h)/h is a square, then h+1 is even and 2*h+1 is a multiple of 3, so that (h+1)/2 and (2*h+1)/3 must be odd squares. The numbers h that satisfy this condition are in A084231. Let h = 1+24*k+72*k^2; for any natural k we have (h+1)/2 = (6*k+1)^2, but only if 16*k*(3*k+1)+1 is a square also (2*h+1)/3 is a square. Searching what integer numbers k satisfy this condition leads to this sequence.

Examples

			a(0) = ((2+sqrt(3))^1+(2-sqrt(3))^1-4)/24 = 0,
a(1) = ((2+sqrt(3))^3+(2-sqrt(3))^3-4)/24 = 2,
a(2) = ((2+sqrt(3))^5+(2-sqrt(3))^5-4)/24 = 30;
a(2) = 14*a(1)-a(0)+2 = 30,
a(3) = 14*a(2)-a(1)+2 = 420,
a(4) = 14*a(3)-a(2)+2 = 5852;
a(3) = 15*a(2)-15*a(1)+a(0) = 420,
a(4) = 15*a(3)-15*a(2)+a(1) = 5852.
Regarding to the comment, a(3) = 420 and so 72*a(3)^2+24*a(3)+1 = A084231(4) = 12710881, therefore Sum_{i=1..12710881} i^2/12710881 = 7338631^2 = A084232(3)^2. - _Bruno Berselli_, Oct 17 2012
		

Crossrefs

Programs

  • Magma
    m:=19; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(2/((1-x)*(1-14*x+x^2)))); // Bruno Berselli, Oct 16 2012
    
  • Mathematica
    LinearRecurrence[{15, -15, 1}, {0, 2, 30}, 20] (* Bruno Berselli, Oct 16 2012 *)
  • Maxima
    makelist(expand(((2+sqrt(3))^(2*n+1)+(2-sqrt(3))^(2*n+1)-4)/24), n, 0, 19); /* Bruno Berselli, Oct 16 2012 */
    
  • PARI
    a=vector(20); a[1]=0; a[2]=2; a[3]=30; for(i=4, #a, a[i]=15*a[i-1]-15*a[i-2]+a[i-3]); a \\ Bruno Berselli, Oct 16 2012

Formula

a(n) = ((2 + sqrt(3))^(2*n + 1) + (2 - sqrt(3))^(2*n + 1) - 4)/24.
a(n) = (cosh((2*n + 1)*log(2 + sqrt(3))) - 2)/12.
a(n) = a(-n-1) = 15*a(n-1) - 15*a(n-2) + a(n-3).
a(n) = 14*a(n-1) - a(n-2) + 2.
a(n) = 2*A076139(n).
72*a(n)^2 + 24*a(n)+1 = A084231(n+1).
16*a(n)*(3*a(n) + 1) + 1 = A028230(n+1)^2.
G.f.: 2*x/((1 - x)*(1 - 14*x + x^2)). - Bruno Berselli, Oct 16 2012
a(n) = 2*A076139(n) = 1/2*A123480(n) = 1/4*A045899(n) = 2/3*A076140(n). - Peter Bala, Dec 31 2012

A336623 First member of the Diophantine pair (m, k) that satisfies 8*(m^2 + m) = k^2 + k; a(n) = m.

Original entry on oeis.org

0, 5, 11, 186, 390, 6335, 13265, 215220, 450636, 7311161, 15308375, 248364270, 520034130, 8437074035, 17665852061, 286612152936, 600118935960, 9736376125805, 20386377970595, 330750176124450, 692536732064286, 11235769612105511, 23525862512215145, 381685416635462940
Offset: 0

Views

Author

Vladimir Pletser, Aug 07 2020

Keywords

Comments

The indices of triangular numbers that are one-eighth of other triangular numbers [m of T(m) such that T(m)=T(k)/8]. The T(m)'s are in A336624, the T(k)'s are in A336626 and the k's are in A336625.
Also, nonnegative m such that 32*m^2 + 32*m + 1 is a square.
Can be defined for negative n by setting a(n) = a(-1-n) for all n in Z.

Examples

			a(2) = 34 a(0) - a(-2)+16=0 -5 +16 = 11 ; a(3) = 34 a(1) - a(-1)+16 = 34*5 -0 +16 = 186, etc.
		

Crossrefs

Programs

  • Maple
    f := gfun:-rectoproc({a(n) = 34*a(n - 2) - a(n - 4) + 16, a(1) = 5, a(0) = 0, a(-1) = 0,  a(-2) = 5}, a(n), remember); map(f, [$ (0 .. 50)]); #
  • Mathematica
    LinearRecurrence[{1, 34, -34, -1, 1}, {0, 5, 11, 186, 390}, 24] (* Amiram Eldar, Aug 08 2020 *)
    FullSimplify[Table[((3*Sqrt[2] - 2*(-1)^n)*(1 + Sqrt[2])^(2*n + 1) + (3*Sqrt[2] + 2*(-1)^n)*(Sqrt[2] - 1)^(2*n + 1) - 8)/16, {n, 0, 20}]] (* Vaclav Kotesovec, Sep 08 2020 *)
  • PARI
    concat(0, Vec(x*(5 + 6*x + 5*x^2) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)) + O(x^22))) \\ Colin Barker, Aug 08 2020

Formula

a(n) = 34 a(n-2) - a(n-4) + 16 for n>=2, with a(1)=5, a(0)=0, a(-1)=0, a(-2)=5.
a(n) = a(n-1) + 34 a(n-2) - 34 a(n-3) - a(n-4)+ a(n-5) for n>=3 with a(2)=11, a(1)=5, a(0)=0, a(-1)=0, a(-2)=5.
a(n) = (C+((-1)^n)*D)*A^n + (E+((-1)^n)*F)*B^n -1/2 with A = (sqrt(2) + 1)^2 ; B = (sqrt(2) - 1)^2 ; C = 3*(2 + sqrt(2))/16 ; D = -(1 + sqrt(2))/8 ; E = 3*(2 - sqrt(2))/16 ; F = (sqrt(2) - 1)/8 and n>=0.
a(n) = (-1 + sqrt(8*b(n) + 1))/2 where b(n) = A336624(n).
G.f.: x*(5 + 6*x + 5*x^2) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)). - Colin Barker, Aug 08 2020
a(n) = ((3*sqrt(2) - 2*(-1)^n) * (1 + sqrt(2))^(2*n + 1) + (3*sqrt(2) + 2*(-1)^n) * (sqrt(2) - 1)^(2*n + 1) - 8)/16. - Vaclav Kotesovec, Sep 08 2020
Comment from _Vladimir Pletser, Feb 21 2021: (Start)
a(n) = ((4 + sqrt(2))(1 + sqrt(2))^(2n) + (4 - sqrt(2))(1 - sqrt(2))^(2n))/16 - 1/2 for even n.
a(n) = ((8 + 5 sqrt(2))(1 + sqrt(2))^(2n) + (8 - 5 sqrt(2))(1 - sqrt(2))^(2n))/16 - 1/2 for odd n. (End)

A336626 Triangular numbers that are eight times another triangular number.

Original entry on oeis.org

0, 120, 528, 139128, 609960, 160554240, 703893960, 185279454480, 812293020528, 213812329916328, 937385441796000, 246739243443988680, 1081741987539564120, 284736873122033021040, 1248329316235215199128, 328586104843582662292128, 1440570949193450800230240, 379188080252621270252095320
Offset: 1

Views

Author

Vladimir Pletser, Oct 04 2020

Keywords

Comments

The triangular numbers T(t) that are eight times another triangular number T(u) : T(t) = 8*T(u). The t's are in A336625, the T(u)'s are in A336624 and the u's are in A336623.
Can be defined for negative n by setting a(n) = a(-1-n) for all n in Z.

Examples

			a(2) = 120 is a term because it is triangular and 120/8 = 15 is also triangular.
a(3) = 1154*a(1) - a(-1) + 648 = 0 - 120 + 648 = 528;
a(4) = 1154*a(2) - a(0) + 648 = 1154*120 - 0 + 648 = 139128, etc.
.
From _Peter Luschny_, Oct 19 2020: (Start)
Related sequences in context, as computed by the Julia function:
n   [A336623, A336624,        A336625,  A336626        ]
[0] [0,       0,              0,        0              ]
[1] [5,       15,             15,       120            ]
[2] [11,      66,             32,       528            ]
[3] [186,     17391,          527,      139128         ]
[4] [390,     76245,          1104,     609960         ]
[5] [6335,    20069280,       17919,    160554240      ]
[6] [13265,   87986745,       37520,    703893960      ]
[7] [215220,  23159931810,    608735,   185279454480   ]
[8] [450636,  101536627566,   1274592,  812293020528   ]
[9] [7311161, 26726541239541, 20679087, 213812329916328] (End)
		

Crossrefs

Programs

  • Julia
    function omnibus()
        println("[A336623, A336624, A336625, A336626]")
        println([0, 0, 0, 0])
        t, h = 1, 1
        for n in 1:999999999
            d, r = divrem(t, 8)
            if r == 0
                d2 = 2*d
                s = isqrt(d2)
                d2 == s * (s + 1) && println([s, d, n, t])
            end
            t, h = t + h + 1, h + 1
        end
    end
    omnibus() # Peter Luschny, Oct 19 2020
  • Maple
    f := gfun:-rectoproc({a(n) = 1154*a(n - 2) - a(n - 4) + 648, a(2) = 120, a(1) = 0, a(0) = 0, a(-1) = 120}, a(n), remember); map(f, [$ (1 .. 1000)])[]; #
  • Mathematica
    LinearRecurrence[{1, 1154, -1154, -1, 1}, {0, 120, 528, 139128, 609960}, 18]

Formula

a(n) = 8*A336624(n).
a(n) = 1154*a(n-2) - a(n-4) + 648, for n>=2 with a(2)=120, a(1)=0, a(0)=0, a(-1)=120.
a(n) = a(n-1) + 1154*a(n-2) - 1154*a(n-3) - a(n-4) + a(n-5), for n>=3 with a(3)=528, a(2)=120, a(1)=0, a(0)=0, a(-1)=120.
a(n) = ((10*sqrt(2))/17 + 15/17)*(17 + 12*sqrt(2))^n + (-(10*sqrt(2))/17 + 15/17)*(17 - 12*sqrt(2))^n + (-15/17 - (45*sqrt(2))/68)*(-17 - 12*sqrt(2))^n + (-15/17 + (45*sqrt(2))/68)*(-17 + 12*sqrt(2))^n - 27*(-4 + 3*sqrt(2))*sqrt(2)*(-1/(-17 + 12*sqrt(2)))^n/(1088*(-17 + 12*sqrt(2))) - 27*(4 + 3*sqrt(2))*sqrt(2)*(-1/(-17 - 12*sqrt(2)))^n/(1088*(-17 - 12*sqrt(2))) - 9/16 - 9*(-3 + 2*sqrt(2))*sqrt(2)*(-1/(17 - 12*sqrt(2)))^n/(272*(17 - 12*sqrt(2))) - 9*(3 + 2*sqrt(2))*sqrt(2)*(-1/(17 + 12*sqrt(2)))^n/(272*(17 + 12*sqrt(2))).
Let b(n) be A336625(n). Then a(n) = b(n)*(b(n)+1)/2.
G.f.: 24*x^2*(5 + 17*x + 5*x^2)/(1 - x - 1154*x^2 + 1154*x^3 + x^4 - x^5). - Stefano Spezia, Oct 05 2020
From Vladimir Pletser, Feb 21 2021: (Start)
a(n) = ((11*(1 + sqrt(2))^2 - (-1)^n*6*(4 + 3*sqrt(2)))*(1 + sqrt(2))^(4n) + (11*(1 - sqrt(2))^2 - (-1)^n*6*(4 - 3*sqrt(2)))*(1 - sqrt(2))^(4n))/32 - 9/16.
a(n) = ((1 + 2*sqrt(2))^2*(1 + sqrt(2))^(4n) + (1 - 2*sqrt(2))^2*(1 - sqrt(2))^(4n))/32 - 9/16 for even n.
a(n) = ((5 + 4*sqrt(2))^2*(1 + sqrt(2))^(4n) + (5 - 4*sqrt(2))^2*(1 - sqrt(2))^(4n))/32 - 9/16 for odd n. (End)

A221075 Simple continued fraction expansion of an infinite product.

Original entry on oeis.org

2, 12, 1, 24, 1, 192, 1, 360, 1, 2700, 1, 5040, 1, 37632, 1, 70224, 1, 524172, 1, 978120, 1, 7300800, 1, 13623480, 1, 101687052, 1, 189750624, 1, 1416317952, 1, 2642885280, 1, 19726764300, 1, 36810643320, 1
Offset: 0

Views

Author

Peter Bala, Jan 06 2013

Keywords

Comments

Simple continued fraction expansion of product {n >= 0} {1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+3)}/{1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+1)} at m = 4. For other cases see A221073 (m = 2), A221074 (m = 3) and A221076 (m = 5).
If we denote the present sequence by [2; 12, 1, c(3), 1, c(4), 1, ...] then for k >= 1 the sequence [1; c(2*k+1), 1, c(2*(2*k+1)), 1, c(3*(2*k+1)), 1, ...] gives the simple continued fraction expansion of product {n >= 0} [1-2*{(2-sqrt(3))^(2*k+1)}^(4*n+3)]/[1 - 2*{(2-sqrt(3))^(2*k+1)}^(4*n+1)]. An example is given below

Examples

			Product {n >= 0} {1 - 2*(2 - sqrt(3))^(4*n+3)}/{1 - 2*(2 - sqrt(3))^(4*n+1)} = 2.07715 13807 08976 70415 ...
= 2 + 1/(12 + 1/(1 + 1/(24 + 1/(1 + 1/(192 + 1/(1 + 1/(360 + ...))))))).
Since (2 - sqrt(3))^3 = 26 - 15*sqrt(3) we have the following simple continued fraction expansion:
product {n >= 0} {1 - 2*(26 - 15*sqrt(3))^(4*n+3)}/{1 - 2*(26 - 15*sqrt(3))^(4*n+1)} = 1.04000 05921 62729 43797 ... = 1 + 1/(24 + 1/(1 + 1/(2700 + 1/(1 + 1/(70224 + 1/(1 + 1/(7300800 + ...))))))).
		

Crossrefs

Formula

a(2*n) = 1 for n >= 1. For n >= 1 we have
a(4*n - 3) = (2 + sqrt(3))^(2*n) + (2 - sqrt(3))^(2*n) - 2;
a(4*n - 1) = 1/2*{(2 + sqrt(3) )^(2*n + 1) + (2 - sqrt(3))^(2*n + 1)} - 2.
a(4*n - 3) = 12*A098301(n) = 12*A001353(n)^2 = 4*A007654(n);
a(4*n - 1) = 24*A076139(n) = 12*A217855 = 8*A076140(n) = 6*A123480(n) = 3*A045899(n).
O.g.f.: 2 + x^2/(1 - x^2) + 12*x*(1 + x^2)^2/(1 - 15*x^4 + 15*x^8 - x^12) = 2 + 12*x + x^2 + 24*x^3 + x^4 + 192*x^5 + ....
O.g.f.: (x^10-2*x^8-14*x^6+28*x^4-12*x^3+x^2-12*x-2) / ((x-1)*(x+1)*(x^4-4*x^2+1)*(x^4+4*x^2+1)). - Colin Barker, Jan 10 2014
Showing 1-10 of 16 results. Next