A001570
Numbers k such that k^2 is centered hexagonal.
Original entry on oeis.org
1, 13, 181, 2521, 35113, 489061, 6811741, 94875313, 1321442641, 18405321661, 256353060613, 3570537526921, 49731172316281, 692665874901013, 9647591076297901, 134373609193269601, 1871582937629476513, 26067787517619401581, 363077442309042145621
Offset: 1
G.f. = x + 13*x^2 + 181*x^3 + 2521*x^4 + 35113*x^5 + 489061*x^6 + 6811741*x^7 + ...
- E.-A. Majol, Note #2228, L'Intermédiaire des Mathématiciens, 9 (1902), pp. 183-185. - N. J. A. Sloane, Mar 03 2022
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 1..870 (terms 1..101 from T. D. Noe)
- Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.
- G. Julia, Triangles dont un angle mesure 120 degrés, Problème Capes, part C (in French).
- Tanya Khovanova, Recursive Sequences
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Sociedad Magic Penny Patagonia, Leonardo en Patagonia
- V. Thebault, Consecutive cubes with difference a square, Amer. Math. Monthly, 56 (1949), 174-175.
- Eric Weisstein's World of Mathematics, Hex Number
- Wikipedia, Beal's conjecture
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (14,-1).
One half of odd part of bisection of
A001075. First differences of
A007655.
A122571 is another version of the same sequence.
Cf. similar sequences listed in
A238379.
Cf.
A028231, which gives the corresponding values of x in 3n^2 = x^2 + x + 1.
Similar sequences of the type cosh((2*m+1)*arccosh(k))/k are listed in
A302329. This is the case k=2.
-
[((2 + Sqrt(3))^(2*n - 1) + (2 - Sqrt(3))^(2*n - 1))/4: n in [1..50]]; // G. C. Greubel, Nov 04 2017
-
A001570:=-(-1+z)/(1-14*z+z**2); # Simon Plouffe in his 1992 dissertation.
-
NestList[3 + 7*#1 + 4*Sqrt[1 + 3*#1 + 3*#1^2] &, 0, 24] (* Zak Seidov, May 06 2007 *)
f[n_] := Simplify[(2 + Sqrt@3)^(2 n - 1) + (2 - Sqrt@3)^(2 n - 1)]/4; Array[f, 19] (* Robert G. Wilson v, Oct 28 2010 *)
a[c_, n_] := Module[{},
p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
d := Denominator[Convergents[Sqrt[c], n p]];
t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
Return[t];
] (* Complement of A041017 *)
a[12, 20] (* Gerry Martens, Jun 07 2015 *)
LinearRecurrence[{14, -1}, {1, 13}, 19] (* Jean-François Alcover, Sep 26 2017 *)
CoefficientList[Series[x (1-x)/(1-14x+x^2),{x,0,20}],x] (* Harvey P. Dale, Sep 18 2024 *)
-
{a(n) = real( (2 + quadgen( 12)) ^ (2*n - 1)) / 2}; /* Michael Somos, Feb 15 2011 */
A076139
Triangular numbers that are one-third of another triangular number: T(m) such that 3*T(m) = T(k) for some k.
Original entry on oeis.org
0, 1, 15, 210, 2926, 40755, 567645, 7906276, 110120220, 1533776805, 21362755051, 297544793910, 4144264359690, 57722156241751, 803965923024825, 11197800766105800, 155965244802456376, 2172315626468283465, 30256453525753512135, 421418033734080886426
Offset: 0
Bruce Corrigan (scentman(AT)myfamily.com), Oct 31 2002
G.f. = x + 15*x^2 + 210*x^3 + 2926*x^4 + 40755*x^5 + 567645*x^6 + ...
a(3)=210=T(20) and 3*210=630=T(35).
- Colin Barker, Table of n, a(n) for n = 0..874
- Francesca Arici and Jens Kaad, Gysin sequences and SU(2)-symmetries of C*-algebras, arXiv:2012.11186 [math.OA], 2020.
- Roger B. Nelson, Multi-Polygonal Numbers, Mathematics Magazine, Vol. 89, No. 3 (June 2016), pp. 159-164.
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (15,-15,1).
Cf.
A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).
-
[(Evaluate(ChebyshevU(n+1), 7) - Evaluate(ChebyshevU(n), 7) - 1)/12 : n in [0..30]]; // G. C. Greubel, Feb 03 2022
-
a[n_] := a[n] = 14*a[n-1] - a[n-2] + 1; a[0] = 0; a[1] = 1; Table[ a[n], {n, 0, 17}] (* Jean-François Alcover, Dec 15 2011, after given formula *)
-
{a(n) = polchebyshev( n, 2, 7) / 14 + polchebyshev( n, 1, 7)/ 84 - 1 / 12}; /* Michael Somos, Jun 16 2011 */
-
concat(0, Vec(-x/((x-1)*(x^2-14*x+1)) + O(x^100))) \\ Colin Barker, May 15 2015
-
[(chebyshev_U(n,7) - chebyshev_U(n-1,7) - 1)/12 for n in (0..30)] # G. C. Greubel, Feb 03 2022
More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
A045899
Numbers k such that k+1 and 3*k+1 are perfect squares.
Original entry on oeis.org
0, 8, 120, 1680, 23408, 326040, 4541160, 63250208, 880961760, 12270214440, 170902040408, 2380358351280, 33154114877520, 461777249934008, 6431727384198600, 89582406128846400, 1247721958419651008, 17378525011746267720, 242051628206028097080, 3371344269872647091408
Offset: 1
Andrej Dujella (duje(AT)math.hr)
- G. C. Greubel, Table of n, a(n) for n = 1..870
- A. Baker and H. Davenport, The Equations 3x^2-2=y^2 and 8x^2-7=z^2, Quart. J. Math. Oxford 20 (1969).
- A. Dujella and A. Pethoe, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306.
- A. Dujella, The Problem of Diophantus and Davenport, References
- A. Dujella, Publications of Andrej Dujella
- Z. Franusic, On the Extension of the Diophantine Pair {1,3} in Z[surd d], J. Int. Seq. 13 (2010) # 10.9.6
- P. Gibbs, 1,3,8,120 ... A Diophantine Problem
- P. Gibbs, Diophantine quadruples and Cayley's hyperdeterminant, arXiv:math/0107203 [math.NT], 2001.
- Index entries for linear recurrences with constant coefficients, signature (15,-15,1).
-
f[n_] := FullSimplify[((Sqrt[3] + 2)*(7 + 4*Sqrt[3])^n - (Sqrt[3] - 2) (7 - 4 Sqrt[3])^n - 4)/6]; Array[f, 18, 0] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Apr 23 2006 *)
Rest[CoefficientList[Series[-8*x^2/((x - 1)*(x^2 - 14*x + 1)), {x,0,50}], x]] (* G. C. Greubel, Jun 07 2017 *)
LinearRecurrence[{15,-15,1},{0,8,120},20] (* Harvey P. Dale, Jul 14 2024 *)
-
x='x+O('x^50); concat([0], Vec(-8*x^2/((x - 1)*(x^2 - 14*x + 1)))) \\ G. C. Greubel, Jun 07 2017
A123480
Coefficients of the series giving the best rational approximations to sqrt(3).
Original entry on oeis.org
4, 60, 840, 11704, 163020, 2270580, 31625104, 440480880, 6135107220, 85451020204, 1190179175640, 16577057438760, 230888624967004, 3215863692099300, 44791203064423200, 623860979209825504, 8689262505873133860, 121025814103014048540, 1685672134936323545704
Offset: 1
-
CoefficientList[Series[-4*x/((x - 1)*(x^2 - 14*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 13 2017 *)
-
my(x='x+O('x^50)); Vec(-4*x/((x-1)*(x^2-14*x+1))) \\ G. C. Greubel, Oct 13 2017
A336624
Triangular numbers that are one-eighth of other triangular numbers; T(t) such that 8*T(t)=T(u) for some u where T(k) is the k-th triangular number.
Original entry on oeis.org
0, 15, 66, 17391, 76245, 20069280, 87986745, 23159931810, 101536627566, 26726541239541, 117173180224500, 30842405430498585, 135217748442445515, 35592109140254127630, 156041164529401899891, 41073263105447832786516, 180071368649181350028780, 47398510031577658781511915
Offset: 0
a(1)= 15 is a term because it is triangular and 8*15 = 120 is also triangular.
a(2) = 1154*a(0) - a(-2) + 81 = 0 - 15 + 81 = 66;
a(3) = 1154*a(1) - a(-1) + 81 = 1154*15 - 0 + 81 = 17391, etc.
- Vladimir Pletser, Table of n, a(n) for n = 0..650
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- Index entries for linear recurrences with constant coefficients, signature (1,1154,-1154,-1,1).
Cf.
A053141,
A001652,
A075528,
A029549,
A061278,
A001571,
A076139,
A076140,
A077259,
A077262,
A077260,
A077261,
A077288,
A077291,
A077289,
A077290,
A077398,
A077401,
A077399,
A077400.
-
f := gfun:-rectoproc({a(n) = 1154*a(n - 2) - a(n - 4) + 81, a(1) = 15, a(0) = 0, a(-1) = 0, a(-2) = 15}, a(n), remember): map(f, [$ (0 .. 40)])[]; #
-
LinearRecurrence[{1, 1154, -1154, -1, 1}, {0, 15, 66, 17391, 76245}, 18] (* Amiram Eldar, Aug 08 2020 *)
FullSimplify[Table[((Sqrt[2] + 1)^(4*n + 2)*(11 - 6*(-1)^n*Sqrt[2]) + (Sqrt[2] - 1)^(4*n + 2)*(11 + 6*(-1)^n*Sqrt[2]) - 18)/256, {n, 0, 17}]] (* Vaclav Kotesovec, Sep 08 2020 *)
Select[Accumulate[Range[0, 10^6]]/8, OddQ[Sqrt[8 # + 1]] &] (* The program generates the first 8 terms of the sequence. *) (* Harvey P. Dale, Jan 15 2024 *)
-
concat(0, Vec(3*x*(5 + 17*x + 5*x^2) / ((1 - x)*(1 - 34*x + x^2)*(1 + 34*x + x^2)) + O(x^40))) \\ Colin Barker, Aug 08 2020
A336625
Indices of triangular numbers that are eight times other triangular numbers.
Original entry on oeis.org
0, 15, 32, 527, 1104, 17919, 37520, 608735, 1274592, 20679087, 43298624, 702480239, 1470878640, 23863649055, 49966575152, 810661587647, 1697392676544, 27538630330959, 57661384427360, 935502769664975, 1958789677853712, 31779555538278207, 66541187662598864, 1079569385531794079, 2260441590850507680
Offset: 1
a(3) = 34*a(1) - a(-1) + 16 = 0 - (-16) + 16 = 32,
a(4) = 34*a(2) - a(0) + 16 = 34*15 - (-1) + 16 = 527, etc.
- Vladimir Pletser, Table of n, a(n) for n = 1..1000
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- Index entries for linear recurrences with constant coefficients, signature (1,34,-34,-1,1).
Cf.
A053141,
A001652,
A075528,
A029549,
A061278,
A001571,
A076139,
A076140,
A077259,
A077262,
A077260,
A077261,
A077288,
A077291,
A077289,
A077290,
A077398,
A077401,
A077399,
A077400,
A000217.
-
f := gfun:-rectoproc({a(n) = 34*a(n - 2) - a(n - 4) + 16, a(2) = 15, a(1) = 0, a(0) = -1, a(-1) = -16}, a(n), remember); map(f, [$ (0 .. 1000)]); #
-
LinearRecurrence[{1, 34, -34, -1, 1}, {0, 15, 32, 527, 1104, 17919}, 29] (* Amiram Eldar, Aug 18 2020 *)
FullSimplify[Table[((Sqrt[2] + 1)^(2*n + 1) * (3 - Sqrt[2]*(-1)^n) - (Sqrt[2] - 1)^(2*n + 1) * (3 + Sqrt[2]*(-1)^n) - 2)/4, {n, 0, 20}]] (* Vaclav Kotesovec, Sep 08 2020 *)
-
concat(0, Vec(x*(15 + 17*x - 15*x^2 - x^3) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)) + O(x^22))) \\ Colin Barker, Aug 14 2020
A217855
Numbers m such that 16*m*(3*m+1)+1 is a square.
Original entry on oeis.org
0, 2, 30, 420, 5852, 81510, 1135290, 15812552, 220240440, 3067553610, 42725510102, 595089587820, 8288528719380, 115444312483502, 1607931846049650, 22395601532211600, 311930489604912752, 4344631252936566930, 60512907051507024270, 842836067468161772852
Offset: 0
a(0) = ((2+sqrt(3))^1+(2-sqrt(3))^1-4)/24 = 0,
a(1) = ((2+sqrt(3))^3+(2-sqrt(3))^3-4)/24 = 2,
a(2) = ((2+sqrt(3))^5+(2-sqrt(3))^5-4)/24 = 30;
a(2) = 14*a(1)-a(0)+2 = 30,
a(3) = 14*a(2)-a(1)+2 = 420,
a(4) = 14*a(3)-a(2)+2 = 5852;
a(3) = 15*a(2)-15*a(1)+a(0) = 420,
a(4) = 15*a(3)-15*a(2)+a(1) = 5852.
Regarding to the comment, a(3) = 420 and so 72*a(3)^2+24*a(3)+1 = A084231(4) = 12710881, therefore Sum_{i=1..12710881} i^2/12710881 = 7338631^2 = A084232(3)^2. - _Bruno Berselli_, Oct 17 2012
-
m:=19; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(2/((1-x)*(1-14*x+x^2)))); // Bruno Berselli, Oct 16 2012
-
LinearRecurrence[{15, -15, 1}, {0, 2, 30}, 20] (* Bruno Berselli, Oct 16 2012 *)
-
makelist(expand(((2+sqrt(3))^(2*n+1)+(2-sqrt(3))^(2*n+1)-4)/24), n, 0, 19); /* Bruno Berselli, Oct 16 2012 */
-
a=vector(20); a[1]=0; a[2]=2; a[3]=30; for(i=4, #a, a[i]=15*a[i-1]-15*a[i-2]+a[i-3]); a \\ Bruno Berselli, Oct 16 2012
A336623
First member of the Diophantine pair (m, k) that satisfies 8*(m^2 + m) = k^2 + k; a(n) = m.
Original entry on oeis.org
0, 5, 11, 186, 390, 6335, 13265, 215220, 450636, 7311161, 15308375, 248364270, 520034130, 8437074035, 17665852061, 286612152936, 600118935960, 9736376125805, 20386377970595, 330750176124450, 692536732064286, 11235769612105511, 23525862512215145, 381685416635462940
Offset: 0
a(2) = 34 a(0) - a(-2)+16=0 -5 +16 = 11 ; a(3) = 34 a(1) - a(-1)+16 = 34*5 -0 +16 = 186, etc.
- Vladimir Pletser, Table of n, a(n) for n = 0..1000
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- Index entries for linear recurrences with constant coefficients, signature (1,34,-34,-1,1).
Cf.
A053141,
A001652,
A075528,
A029549,
A061278,
A001571,
A076139,
A076140,
A077259,
A077262,
A077260,
A077261,
A077288,
A077291,
A077289 ,
A077290,
A077398,
A077401,
A077399,
A077400,
A000217.
-
f := gfun:-rectoproc({a(n) = 34*a(n - 2) - a(n - 4) + 16, a(1) = 5, a(0) = 0, a(-1) = 0, a(-2) = 5}, a(n), remember); map(f, [$ (0 .. 50)]); #
-
LinearRecurrence[{1, 34, -34, -1, 1}, {0, 5, 11, 186, 390}, 24] (* Amiram Eldar, Aug 08 2020 *)
FullSimplify[Table[((3*Sqrt[2] - 2*(-1)^n)*(1 + Sqrt[2])^(2*n + 1) + (3*Sqrt[2] + 2*(-1)^n)*(Sqrt[2] - 1)^(2*n + 1) - 8)/16, {n, 0, 20}]] (* Vaclav Kotesovec, Sep 08 2020 *)
-
concat(0, Vec(x*(5 + 6*x + 5*x^2) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)) + O(x^22))) \\ Colin Barker, Aug 08 2020
A336626
Triangular numbers that are eight times another triangular number.
Original entry on oeis.org
0, 120, 528, 139128, 609960, 160554240, 703893960, 185279454480, 812293020528, 213812329916328, 937385441796000, 246739243443988680, 1081741987539564120, 284736873122033021040, 1248329316235215199128, 328586104843582662292128, 1440570949193450800230240, 379188080252621270252095320
Offset: 1
a(2) = 120 is a term because it is triangular and 120/8 = 15 is also triangular.
a(3) = 1154*a(1) - a(-1) + 648 = 0 - 120 + 648 = 528;
a(4) = 1154*a(2) - a(0) + 648 = 1154*120 - 0 + 648 = 139128, etc.
.
From _Peter Luschny_, Oct 19 2020: (Start)
Related sequences in context, as computed by the Julia function:
n [A336623, A336624, A336625, A336626 ]
[0] [0, 0, 0, 0 ]
[1] [5, 15, 15, 120 ]
[2] [11, 66, 32, 528 ]
[3] [186, 17391, 527, 139128 ]
[4] [390, 76245, 1104, 609960 ]
[5] [6335, 20069280, 17919, 160554240 ]
[6] [13265, 87986745, 37520, 703893960 ]
[7] [215220, 23159931810, 608735, 185279454480 ]
[8] [450636, 101536627566, 1274592, 812293020528 ]
[9] [7311161, 26726541239541, 20679087, 213812329916328] (End)
- Vladimir Pletser, Table of n, a(n) for n = 1..653
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- V. Pletser, Recurrent relations for triangular multiples of other triangular numbers, Indian J. Pure Appl. Math. 53 (2022) 782-791
- Index entries for linear recurrences with constant coefficients, signature (1,1154,-1154,-1,1).
Cf.
A053141,
A001652,
A075528,
A029549,
A061278,
A001571,
A076139,
A076140,
A077259,
A077260,
A077261,
A077262,
A077288,
A077289,
A077290,
A077291,
A077398,
A077399,
A077400,
A077401.
-
function omnibus()
println("[A336623, A336624, A336625, A336626]")
println([0, 0, 0, 0])
t, h = 1, 1
for n in 1:999999999
d, r = divrem(t, 8)
if r == 0
d2 = 2*d
s = isqrt(d2)
d2 == s * (s + 1) && println([s, d, n, t])
end
t, h = t + h + 1, h + 1
end
end
omnibus() # Peter Luschny, Oct 19 2020
-
f := gfun:-rectoproc({a(n) = 1154*a(n - 2) - a(n - 4) + 648, a(2) = 120, a(1) = 0, a(0) = 0, a(-1) = 120}, a(n), remember); map(f, [$ (1 .. 1000)])[]; #
-
LinearRecurrence[{1, 1154, -1154, -1, 1}, {0, 120, 528, 139128, 609960}, 18]
A221075
Simple continued fraction expansion of an infinite product.
Original entry on oeis.org
2, 12, 1, 24, 1, 192, 1, 360, 1, 2700, 1, 5040, 1, 37632, 1, 70224, 1, 524172, 1, 978120, 1, 7300800, 1, 13623480, 1, 101687052, 1, 189750624, 1, 1416317952, 1, 2642885280, 1, 19726764300, 1, 36810643320, 1
Offset: 0
Product {n >= 0} {1 - 2*(2 - sqrt(3))^(4*n+3)}/{1 - 2*(2 - sqrt(3))^(4*n+1)} = 2.07715 13807 08976 70415 ...
= 2 + 1/(12 + 1/(1 + 1/(24 + 1/(1 + 1/(192 + 1/(1 + 1/(360 + ...))))))).
Since (2 - sqrt(3))^3 = 26 - 15*sqrt(3) we have the following simple continued fraction expansion:
product {n >= 0} {1 - 2*(26 - 15*sqrt(3))^(4*n+3)}/{1 - 2*(26 - 15*sqrt(3))^(4*n+1)} = 1.04000 05921 62729 43797 ... = 1 + 1/(24 + 1/(1 + 1/(2700 + 1/(1 + 1/(70224 + 1/(1 + 1/(7300800 + ...))))))).
- P. Bala, Some simple continued fraction expansions for an infinite product, Part 1
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,14,0,-14,0,-1,0,1).
Cf.
A001353,
A007654,
A045899,
A076139,
A076140,
A098301,
A123480,
A174500,
A217855,
A221073 (m = 2),
A221074 (m = 3),
A221076 (m = 5).
Showing 1-10 of 16 results.
Comments