A108946 a(2n) = A001570(n), a(2n+1) = -A007654(n+1).
1, -3, 13, -48, 181, -675, 2521, -9408, 35113, -131043, 489061, -1825200, 6811741, -25421763, 94875313, -354079488, 1321442641, -4931691075, 18405321661, -68689595568, 256353060613, -956722646883, 3570537526921, -13325427460800, 49731172316281
Offset: 0
Links
- Robert Munafo, Sequences Related to Floretions
- Index entries for linear recurrences with constant coefficients, signature (-4,0,4,1).
Crossrefs
Programs
-
Magma
/* By definition: */ m:=15; R
:=PowerSeriesRing(Integers(), m); A001570:=Coefficients(R!((1-x)/(1-14*x+x^2))); A007654:=Coefficients(R!(-3*x^2*(1+x)/(-1+x)/(1-14*x+x^2))); &cat[[A001570[i],-A007654[i]]: i in [1..m-2]]; // Bruno Berselli, Feb 05 2013 -
Maple
seriestolist(series((x^2+x+1)/((1-x)*(x+1)*(x^2+4*x+1)), x=0,25));
-
Mathematica
LinearRecurrence[{-4,0,4,1},{1,-3,13,-48},30] (* Harvey P. Dale, Jun 15 2018 *)
Formula
G.f.: (x^2+x+1)/((1-x)*(x+1)*(x^2+4*x+1)).
Floor(((2 + sqrt(3))^n + (2 - sqrt(3))^n)/4) produces this sequence with a different offset and without signs. - James R. Buddenhagen, May 20 2010
Define c(n) = a(n) - 4*a(n+1) - a(n+2) and d(n) = -a(n) - 4*a(n+1) - a(n+2); Conjectures: I: c(2n) = 24*A076139(n); (Triangular numbers that are one-third of another triangular number) II: c(2n+1) = -A011943(n+1); (Numbers n such that any group of n consecutive integers has integral standard deviation) III: d(2n) = -2; IV: d(2n+1) = -1
Comments