cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A076139 Triangular numbers that are one-third of another triangular number: T(m) such that 3*T(m) = T(k) for some k.

Original entry on oeis.org

0, 1, 15, 210, 2926, 40755, 567645, 7906276, 110120220, 1533776805, 21362755051, 297544793910, 4144264359690, 57722156241751, 803965923024825, 11197800766105800, 155965244802456376, 2172315626468283465, 30256453525753512135, 421418033734080886426
Offset: 0

Views

Author

Bruce Corrigan (scentman(AT)myfamily.com), Oct 31 2002

Keywords

Comments

Both triangular and generalized pentagonal numbers: intersection of A000217 and A001318. - Vladeta Jovovic, Aug 29 2004
Partial sums of Chebyshev polynomials S(n,14).

Examples

			G.f. = x + 15*x^2 + 210*x^3 + 2926*x^4 + 40755*x^5 + 567645*x^6 + ...
a(3)=210=T(20) and 3*210=630=T(35).
		

Crossrefs

The m values are in A061278, the k values are in A001571.
Cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).

Programs

  • Magma
    [(Evaluate(ChebyshevU(n+1), 7) - Evaluate(ChebyshevU(n), 7) - 1)/12 : n in [0..30]]; // G. C. Greubel, Feb 03 2022
  • Mathematica
    a[n_] := a[n] = 14*a[n-1] - a[n-2] + 1; a[0] = 0; a[1] = 1; Table[ a[n], {n, 0, 17}] (* Jean-François Alcover, Dec 15 2011, after given formula *)
  • PARI
    {a(n) = polchebyshev( n, 2, 7) / 14 + polchebyshev( n, 1, 7)/ 84 - 1 / 12}; /* Michael Somos, Jun 16 2011 */
    
  • PARI
    concat(0, Vec(-x/((x-1)*(x^2-14*x+1)) + O(x^100))) \\ Colin Barker, May 15 2015
    
  • Sage
    [(chebyshev_U(n,7) - chebyshev_U(n-1,7) - 1)/12 for n in (0..30)] # G. C. Greubel, Feb 03 2022
    

Formula

G.f.: x / ((1 - x) * (1 - 14*x +x^2)).
a(n+1) = Sum_{k=0..n} S(k, 14), n >= 0, where S(k, 14) = U(k, 7) = A007655(k+2).
a(n+1) = (S(n+1, 14) - S(n, 14) - 1)/12, n >= 0.
a(n) = 14 * a(n-1) - a(n-2) + 1. a(0)=0, a(1)=1.
a(-n) = a(n-1).
a(n) = A061278(n)*(A061278(n)+1)/2.
a(n) = (1/288)*(-24 + (12-6*sqrt(3))*(7-4*sqrt(3))^n + (12+6*sqrt(3))*(7+4*sqrt(3))^n).
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3) with a(0)=0, a(1)=1, a(2)=15. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
a(2*n) = A108281(n + 1). a(2*n + 1) = A014979(n + 2). - Michael Somos, Jun 16 2011
a(n) = (1/2)*A217855(n) = (1/3)*A076140(n) = (1/4)*A123480(n) = (1/8)*A045899(n). - Peter Bala, Dec 31 2012
a(n) = A001353(n) * A001353(n-1) / 4. - Richard R. Forberg, Aug 26 2013
a(n) = ((2+sqrt(3))^(2*n+1) + (2-sqrt(3))^(2*n+1))/48 - 1/12. - Vladimir Pletser, Jan 15 2021

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
Chebyshev comments from Wolfdieter Lang, Aug 31 2004

A076140 Triangular numbers T(k) that are three times another triangular number: T(k) such that T(k) = 3*T(m) for some m.

Original entry on oeis.org

0, 3, 45, 630, 8778, 122265, 1702935, 23718828, 330360660, 4601330415, 64088265153, 892634381730, 12432793079070, 173166468725253, 2411897769074475, 33593402298317400, 467895734407369128, 6516946879404850395, 90769360577260536405, 1264254101202242659278
Offset: 0

Views

Author

Bruce Corrigan (scentman(AT)myfamily.com), Oct 31 2002

Keywords

Comments

This is a subsequence of A045943. - Michel Marcus, Apr 26 2014

Examples

			a(3) = 630 because 630 = T(35) and 630/3 = 210 = T(20).
		

Crossrefs

Subsequence of A000217.
The m values are in A061278 and the k values are in A001571.
Cf. A045943.

Programs

  • Mathematica
    Join[{0}, CoefficientList[Series[3/(1 - 15x + 15x^2 - x^3), {x, 0, 20}], x]]  (* Harvey P. Dale, Apr 02 2011 *)
    triNums = Accumulate[Range[0, 9999]]; Select[triNums, MemberQ[triNums, #/3] &] (* Alonso del Arte, Mar 24 2020 *)
  • PARI
    concat(0, Vec(-3*x/((x-1)*(x^2-14*x+1)) + O(x^100))) \\ Colin Barker, May 15 2015

Formula

a(n) = (3/288)*(-24 + (12 - 6*sqrt(3))*(7 - 4*sqrt(3))^n + (12 + 6*sqrt(3))*(7 + 4*sqrt(3))^n).
From Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002: (Start)
a(0) = 0, a(1) = 3, a(2) = 45; a(n) = 15*(a(n-1) -a (n-2)) + a(n-3) for n >= 3.
G.f.: (3*x)/(1 - 15*x + 15*x^2 - x^3). (End)
a(n) = 3*A076139(n) = 3/2*A217855(n) = 3/4*A123480(n) = 3/8*A045899(n). - Peter Bala, Dec 31 2012
a(0) = 0, a(n) = 14 * a(n - 1) - a(n - 2) + 3 for n > 0. - Vladimir Pletser, Mar 23 2020
a(n) = ((2+sqrt(3))*(7+4*sqrt(3))^n + ((2-sqrt(3))*(7-4*sqrt(3))^n))/16 - 1/4 = ((2+sqrt(3))^(2n+1) + ((2-sqrt(3))^(2n+1)))/16 - 1/4. - Vladimir Pletser, Jan 15 2021

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002

A160682 The list of the A values in the common solutions to 13*k+1 = A^2 and 17*k+1 = B^2.

Original entry on oeis.org

1, 14, 209, 3121, 46606, 695969, 10392929, 155197966, 2317576561, 34608450449, 516809180174, 7717529252161, 115246129602241, 1720974414781454, 25699370092119569, 383769576967012081, 5730844284413061646, 85578894689228912609, 1277952576054020627489
Offset: 1

Views

Author

Paul Weisenhorn, May 23 2009

Keywords

Comments

This summarizes the case C=13 of common solutions to C*k+1=A^2, (C+4)*k+1=B^2.
The 2 equations are equivalent to the Pell equation x^2-C*(C+4)*y^2=1,
with x=(C*(C+4)*k+C+2)/2; y=A*B/2 and with smallest values x(1) = (C+2)/2, y(1)=1/2.
Generic recurrences are:
A(j+2)=(C+2)*A(j+1)-A(j) with A(1)=1; A(2)=C+1.
B(j+2)=(C+2)*B(j+1)-B(j) with B(1)=1; B(2)=C+3.
k(j+3)=(C+1)*(C+3)*( k(j+2)-k(j+1) )+k(j) with k(1)=0; k(2)=C+2; k(3)=(C+1)*(C+2)*(C+3).
x(j+2)=(C^2+4*C+2)*x(j+1)-x(j) with x(1)=(C+2)/2; x(2)=(C^2+4*C+1)*(C+2)/2;
Binet-type of solutions of these 2nd order recurrences are:
R=C^2+4*C; S=C*sqrt(R); T=(C+2); U=sqrt(R); V=(C+4)*sqrt(R);
A(j)=((R+S)*(T+U)^(j-1)+(R-S)*(T-U)^(j-1))/(R*2^j);
B(j)=((R+V)*(T+U)^(j-1)+(R-V)*(T-U)^(j-1))/(R*2^j);
x(j)+sqrt(R)*y(j)=((T+U)*(C^2*4*C+2+(C+2)*sqrt(R))^(j-1))/2^j;
k(j)=(((T+U)*(R+2+T*U)^(j-1)+(T-U)*(R+2-T*U)^(j-1))/2^j-T)/R. [Paul Weisenhorn, May 24 2009]
.C -A----- -B----- -k-----
For n>=2, a(n) equals the permanent of the (2n-2)X(2n-2) tridiagonal matrix with sqrt(13)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. [John M. Campbell, Jul 08 2011]
Positive values of x (or y) satisfying x^2 - 15xy + y^2 + 13 = 0. - Colin Barker, Feb 11 2014

Crossrefs

Cf. similar sequences listed in A238379.

Programs

  • Magma
    I:=[1,14]; [n le 2 select I[n] else 15*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 12 2014
    
  • Mathematica
    LinearRecurrence[{15,-1},{1,14},20] (* Harvey P. Dale, Oct 08 2012 *)
    CoefficientList[Series[(1 - x)/(1 - 15 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
  • PARI
    a(n) = round((2^(-1-n)*((15-sqrt(221))^n*(13+sqrt(221))+(-13+sqrt(221))*(15+sqrt(221))^n))/sqrt(221)) \\ Colin Barker, Jul 25 2016

Formula

a(n) = 15*a(n-1)-a(n-2).
G.f.: (1-x)*x/(1-15*x+x^2).
a(n) = (2^(-1-n)*((15-sqrt(221))^n*(13+sqrt(221))+(-13+sqrt(221))*(15+sqrt(221))^n))/sqrt(221). - Colin Barker, Jul 25 2016

Extensions

Edited, extended by R. J. Mathar, Sep 02 2009
First formula corrected by Harvey P. Dale, Oct 08 2012

A245031 Numbers m such that 3*m+1 and 8*m+1 are both squares.

Original entry on oeis.org

0, 1, 21, 120, 2080, 11781, 203841, 1154440, 19974360, 113123361, 1957283461, 11084934960, 191793804840, 1086210502741, 18793835590881, 106437544333680, 1841604094101520, 10429793134197921, 180458407386358101, 1022013289607062600
Offset: 1

Views

Author

Bruno Berselli, Jul 15 2014

Keywords

Comments

Naturally, all terms are triangular numbers.
Numbers m such that k*m+1 and 8*m+1 are both squares:
k=1: A006454;
k=3: this sequence;
k=4: A029549;
k=5: 0, 3, 231, 4560, 333336, 6575751, ...
k=6: A200999;
k=7: A157879.
Numbers m such that 3*m+1 and k*m+1 are both squares:
k=1: A045899;
k=2: A045502;
k=4: A059989;
k=5: A159683;
k=6: 8*A029546;
k=7: A160695;
k=8: this sequence.

Crossrefs

Programs

  • Magma
    I:=[0,1,21,120,2080]; [n le 5 select I[n] else Self(n-1)+98*Self(n-2)-98*Self(n-3)-Self(n-4)+Self(n-5): n in [1..20]];
  • Mathematica
    LinearRecurrence[{1, 98, -98, -1, 1}, {0, 1, 21, 120, 2080}, 20] (* or *) CoefficientList[Series[x (1 + 20 x + x^2)/((1 - x) (1 - 10 x + x^2) (1 + 10 x + x^2)), {x, 0, 20}], x]
  • Maxima
    a[1]:0$ a[2]:1$ a[3]:21$ a[4]:120$ a[5]:2080$ a[n]:=a[n-1]+98*a[n-2]-98*a[n-3]-a[n-4]+a[n-5]$ makelist(a[n], n, 1, 20);
    
  • PARI
    a=vector(20); a[1]=0; a[2]=1; a[3]=21; a[4]=120; a[5]=2080; for(i=6, #a, a[i]=a[i-1]+98*a[i-2]-98*a[i-3]-a[i-4]+a[i-5]); a
    

Formula

G.f.: x^2*(1 + 20*x + x^2)/((1 - x)*(1 - 10*x + x^2)*(1 + 10*x + x^2)).
a(n) = a(n-1) + 98*a(n-2) - 98*a(n-3) - a(n-4) + a(n-5).
G.f. of the quadrisections:
a(4k+1): 40*x*(52 + 3*x)/((1 - x)*(1 - 9602*x + x^2));
a(4k+2): (1 + 2178*x + 21*x^2)/((1 - x)*(1 - 9602*x + x^2));
a(4k+3): (21 + 2178*x + x^2)/((1 - x)*(1 - 9602*x + x^2));
a(4k+4): 40*(3 + 52*x)/((1 - x)*(1 - 9602*x + x^2)).

Extensions

Changed offset from 0 to 1 and adapted formulas by Bruno Berselli, Mar 03 2016

A046184 Indices of octagonal numbers which are also squares.

Original entry on oeis.org

1, 9, 121, 1681, 23409, 326041, 4541161, 63250209, 880961761, 12270214441, 170902040409, 2380358351281, 33154114877521, 461777249934009, 6431727384198601, 89582406128846401, 1247721958419651009, 17378525011746267721, 242051628206028097081
Offset: 1

Views

Author

Keywords

Comments

The equation a(t)*(3*a(t)-2) = m*m is equivalent to the Pell equation (3*a(t)-1)*(3*a(t)-1) - 3*m*m = 1. - Paul Weisenhorn, May 12 2009
As n increases, this sequence is approximately geometric with common ratio r = lim_{n -> infinity} a(n)/a(n-1) = (2 + sqrt(3))^2 = 7 + 4 * sqrt(3). - Ant King, Nov 16 2011
Also numbers n such that the octagonal number N(n) is equal to the sum of two consecutive triangular numbers. - Colin Barker, Dec 11 2014
Also nonnegative integers y in the solutions to 2*x^2 - 6*y^2 + 4*x + 4*y + 2 + 2 = 0, the corresponding values of x being A251963. - Colin Barker, Dec 11 2014

Crossrefs

Programs

  • Magma
    I:=[1, 9, 121]; [n le 3 select I[n] else 15*Self(n-1)-15*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Nov 17 2011
    
  • Mathematica
    LinearRecurrence[ {15, -15, 1}, {1, 9, 121}, 17 ] (* Ant King, Nov 16 2011 *)
    CoefficientList[Series[x (1-6x+x^2)/((1-x)(1-14x+x^2)),{x,0,30}],x] (* Harvey P. Dale, Sep 01 2021 *)
  • PARI
    Vec(x*(1-6*x+x^2) / ((1-x)*(1-14*x+x^2)) + O(x^100)) \\ Colin Barker, Dec 11 2014

Formula

{n: A000567(n) in A000290}.
Nearest integer to (1/6) * (2+sqrt(3))^(2n-1). - Ralf Stephan, Feb 24 2004
a(n) = A045899(n-1) + 1 = A051047(n+1) + 1 = A003697(2n-2). - N. J. A. Sloane, Jun 12 2004
a(n) = A001835(n)^2. - Lekraj Beedassy, Jul 21 2006
From Paul Weisenhorn, May 12 2009: (Start)
With A=(2+sqrt(3))^2=7+4*sqrt(3) the equation x*x-3*m*m=1 has solutions
x(t) + sqrt(3)*m(t) = (2+sqrt(3))*A^t and the recurrences
x(t+2) = 14*x(t+1) - x(t) with = 2, 26, 362, 5042
m(t+2) = 14*m(t+1) - m(t) with = 1, 15, 209, 2911
a(t+2) = 14*a(t+1) - a(t) - 4 with = 1, 9, 121, as above. (End)
From Ant King, Nov 15 2011: (Start)
a(n) = 14*a(n-1) - a(n-2) - 4.
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3).
a(n) = (1/6)*( (2+sqrt(3))^(2n-1) + (2-sqrt(3))^(2n-1) + 2 ).
a(n) = ceiling( (1/6)*(2 + sqrt(3))^(2n-1) ).
a(n) = (1/6)*( (tan(5*Pi/12))^(2n-1) + (tan(Pi/12))^(2n-1) + 2 ).
a(n) = ceiling ( (1/6)*(tan(5*Pi/12))^(2n-1) ).
G.f.: x*(1-6*x+x^2) / ((1-x)*(1-14*x+x^2)). (End)
a(n) = A006253(2n-2). - Andrey Goder, Oct 17 2021

A123480 Coefficients of the series giving the best rational approximations to sqrt(3).

Original entry on oeis.org

4, 60, 840, 11704, 163020, 2270580, 31625104, 440480880, 6135107220, 85451020204, 1190179175640, 16577057438760, 230888624967004, 3215863692099300, 44791203064423200, 623860979209825504, 8689262505873133860, 121025814103014048540, 1685672134936323545704
Offset: 1

Views

Author

Gene Ward Smith, Sep 28 2006

Keywords

Comments

The partial sums of the series 2 - 1/a(1) - 1/a(2) - 1/a(3) - ... give the best rational approximations to sqrt(3), which constitute every second convergent of the continued fraction. The corresponding continued fractions are [1;1,2,1], [1;1,2,1,2,1], [1;1,2,1,2,1,2,1], [1;1,2,1,2,1,2,1,2,1] and so forth.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-4*x/((x - 1)*(x^2 - 14*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 13 2017 *)
  • PARI
    my(x='x+O('x^50)); Vec(-4*x/((x-1)*(x^2-14*x+1))) \\ G. C. Greubel, Oct 13 2017

Formula

a(n+3) = 15*a(n+2) - 15*a(n+1) + a(n).
a(n) = -1/3 + (1/6 + 1/12*3^(1/2))*(7 + 4*3^(1/2))^n + (1/6 - 1/12*3^(1/2))*(7 - 4*3^(1/2))^n.
a(n) = 4*A076139(n) = 2*A217855(n) = 1/2*A045899(n) = 4/3*A076140(n). - Peter Bala, Dec 31 2012
G.f.: -4*x/((x-1)*(x^2-14*x+1)). - Colin Barker, Jan 20 2013
a(n) = A001353(n)*A001353(n+1). - Antonio Alberto Olivares, Apr 06 2020

A217855 Numbers m such that 16*m*(3*m+1)+1 is a square.

Original entry on oeis.org

0, 2, 30, 420, 5852, 81510, 1135290, 15812552, 220240440, 3067553610, 42725510102, 595089587820, 8288528719380, 115444312483502, 1607931846049650, 22395601532211600, 311930489604912752, 4344631252936566930, 60512907051507024270, 842836067468161772852
Offset: 0

Views

Author

Arnaldo Vicentini, Oct 12 2012

Keywords

Comments

If S(h) is the sum of the squares of the integers from 1 to h, then S(h)/h = (h+1)*(2*h+1)/6. If S(h)/h is a square, then h+1 is even and 2*h+1 is a multiple of 3, so that (h+1)/2 and (2*h+1)/3 must be odd squares. The numbers h that satisfy this condition are in A084231. Let h = 1+24*k+72*k^2; for any natural k we have (h+1)/2 = (6*k+1)^2, but only if 16*k*(3*k+1)+1 is a square also (2*h+1)/3 is a square. Searching what integer numbers k satisfy this condition leads to this sequence.

Examples

			a(0) = ((2+sqrt(3))^1+(2-sqrt(3))^1-4)/24 = 0,
a(1) = ((2+sqrt(3))^3+(2-sqrt(3))^3-4)/24 = 2,
a(2) = ((2+sqrt(3))^5+(2-sqrt(3))^5-4)/24 = 30;
a(2) = 14*a(1)-a(0)+2 = 30,
a(3) = 14*a(2)-a(1)+2 = 420,
a(4) = 14*a(3)-a(2)+2 = 5852;
a(3) = 15*a(2)-15*a(1)+a(0) = 420,
a(4) = 15*a(3)-15*a(2)+a(1) = 5852.
Regarding to the comment, a(3) = 420 and so 72*a(3)^2+24*a(3)+1 = A084231(4) = 12710881, therefore Sum_{i=1..12710881} i^2/12710881 = 7338631^2 = A084232(3)^2. - _Bruno Berselli_, Oct 17 2012
		

Crossrefs

Programs

  • Magma
    m:=19; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(2/((1-x)*(1-14*x+x^2)))); // Bruno Berselli, Oct 16 2012
    
  • Mathematica
    LinearRecurrence[{15, -15, 1}, {0, 2, 30}, 20] (* Bruno Berselli, Oct 16 2012 *)
  • Maxima
    makelist(expand(((2+sqrt(3))^(2*n+1)+(2-sqrt(3))^(2*n+1)-4)/24), n, 0, 19); /* Bruno Berselli, Oct 16 2012 */
    
  • PARI
    a=vector(20); a[1]=0; a[2]=2; a[3]=30; for(i=4, #a, a[i]=15*a[i-1]-15*a[i-2]+a[i-3]); a \\ Bruno Berselli, Oct 16 2012

Formula

a(n) = ((2 + sqrt(3))^(2*n + 1) + (2 - sqrt(3))^(2*n + 1) - 4)/24.
a(n) = (cosh((2*n + 1)*log(2 + sqrt(3))) - 2)/12.
a(n) = a(-n-1) = 15*a(n-1) - 15*a(n-2) + a(n-3).
a(n) = 14*a(n-1) - a(n-2) + 2.
a(n) = 2*A076139(n).
72*a(n)^2 + 24*a(n)+1 = A084231(n+1).
16*a(n)*(3*a(n) + 1) + 1 = A028230(n+1)^2.
G.f.: 2*x/((1 - x)*(1 - 14*x + x^2)). - Bruno Berselli, Oct 16 2012
a(n) = 2*A076139(n) = 1/2*A123480(n) = 1/4*A045899(n) = 2/3*A076140(n). - Peter Bala, Dec 31 2012

A067900 a(n) = 14*a(n-1) - a(n-2); a(0) = 0, a(1) = 8.

Original entry on oeis.org

0, 8, 112, 1560, 21728, 302632, 4215120, 58709048, 817711552, 11389252680, 158631825968, 2209456310872, 30773756526240, 428623135056488, 5969950134264592, 83150678744647800, 1158139552290804608, 16130803053326616712, 224673103194281829360, 3129292641666618994328
Offset: 0

Views

Author

Lekraj Beedassy, May 13 2003

Keywords

Comments

Solves for y in x^2 - 3*y^2 = 4. Quadruples (a=b-y, b, c=b+y, d), with b=y^2 + 1 and d=x*y, where (x, y) solves x^2 - 3*y^2 = 4, satisfy the triangle relation (a^2 + b^2 + c^2 + d^2)^2 = 3*(a^4 + b^4 + c^4 + d^4). Thus d corresponds to the distance sum of the Fermat (or Torriccelli) point from its vertices in a triangle whose sides are in A.P. with middle side b and common difference y.

Crossrefs

Cf. A067902.
First differences of A045899.
Equals 8 * A007655(n+1).

Programs

  • GAP
    m:=7;; a:=[0,8];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
  • Magma
    m:=7; I:=[0,8]; [n le 2 select I[n] else 2*m*Self(n-1) -Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 23 2019
    
  • Maple
    a := proc(n) option remember: if n=0 then RETURN(0) fi: if n=1 then RETURN(8) fi: 14*a(n-1)-a(n-2): end: for n from 0 to 30 do printf(`%d,`,a(n)) od:
    seq( simplify(8*ChebyshevU(n-1, 7)), n=0..20); # G. C. Greubel, Dec 23 2019
  • Mathematica
    LinearRecurrence[{14,-1}, {0,8}, 17] (* Jean-François Alcover, Sep 19 2017 *)
    8*ChebyshevU[Range[21] -2, 7] (* G. C. Greubel, Dec 23 2019 *)
  • PARI
    vector(21, n, 8*polchebyshev(n-2, 2, 7) ) \\ G. C. Greubel, Dec 23 2019
    
  • Sage
    [8*chebyshev_U(n-1,7) for n in (0..20)] # G. C. Greubel, Dec 23 2019
    

Formula

G.f.: 8*x/(1-14*x+x^2). - Philippe Deléham, Nov 17 2008
E.g.f.: 2*exp(7*x)*sinh(4*sqrt(3)*x)/sqrt(3). - Stefano Spezia, Dec 12 2022

A120892 a(n)=3*a(n-1)+3*a(n-2)-a(n-3);a(0)=1,a(1)=0,a(2)=3. a(n)=4*{a(n-1)+(-1)^n}-a(n-2);a(0)=1,a(1)=0.

Original entry on oeis.org

1, 0, 3, 8, 33, 120, 451, 1680, 6273, 23408, 87363, 326040, 1216801, 4541160, 16947843, 63250208, 236052993, 880961760, 3287794051, 12270214440, 45793063713, 170902040408, 637815097923, 2380358351280, 8883618307201
Offset: 0

Views

Author

Lekraj Beedassy, Jul 13 2006

Keywords

Comments

For n>1, short leg of primitive Pythagorean triangles having an angle nearing pi/3 with larger values of sides.[Complete triple (X,Y,Z),XA001353(n),Z=A120893(n), with recurrence relations Y(i+1)=2*{Y(i)-(-1)^i} + 3*a(i) ; Z(i+1)=2*{2*Z(i)-a(i-1)} - 3*(-1)^i] A120893(n)=2*a(n)-(-1)^n.

Programs

Formula

Union of A045899 and A011922.
O.g.f.: -(-1+3*x)/((x+1)*(x^2-4*x+1)). - R. J. Mathar, Nov 23 2007

Extensions

Corrected and extended by T. D. Noe, Nov 07 2006

A221075 Simple continued fraction expansion of an infinite product.

Original entry on oeis.org

2, 12, 1, 24, 1, 192, 1, 360, 1, 2700, 1, 5040, 1, 37632, 1, 70224, 1, 524172, 1, 978120, 1, 7300800, 1, 13623480, 1, 101687052, 1, 189750624, 1, 1416317952, 1, 2642885280, 1, 19726764300, 1, 36810643320, 1
Offset: 0

Views

Author

Peter Bala, Jan 06 2013

Keywords

Comments

Simple continued fraction expansion of product {n >= 0} {1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+3)}/{1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+1)} at m = 4. For other cases see A221073 (m = 2), A221074 (m = 3) and A221076 (m = 5).
If we denote the present sequence by [2; 12, 1, c(3), 1, c(4), 1, ...] then for k >= 1 the sequence [1; c(2*k+1), 1, c(2*(2*k+1)), 1, c(3*(2*k+1)), 1, ...] gives the simple continued fraction expansion of product {n >= 0} [1-2*{(2-sqrt(3))^(2*k+1)}^(4*n+3)]/[1 - 2*{(2-sqrt(3))^(2*k+1)}^(4*n+1)]. An example is given below

Examples

			Product {n >= 0} {1 - 2*(2 - sqrt(3))^(4*n+3)}/{1 - 2*(2 - sqrt(3))^(4*n+1)} = 2.07715 13807 08976 70415 ...
= 2 + 1/(12 + 1/(1 + 1/(24 + 1/(1 + 1/(192 + 1/(1 + 1/(360 + ...))))))).
Since (2 - sqrt(3))^3 = 26 - 15*sqrt(3) we have the following simple continued fraction expansion:
product {n >= 0} {1 - 2*(26 - 15*sqrt(3))^(4*n+3)}/{1 - 2*(26 - 15*sqrt(3))^(4*n+1)} = 1.04000 05921 62729 43797 ... = 1 + 1/(24 + 1/(1 + 1/(2700 + 1/(1 + 1/(70224 + 1/(1 + 1/(7300800 + ...))))))).
		

Crossrefs

Formula

a(2*n) = 1 for n >= 1. For n >= 1 we have
a(4*n - 3) = (2 + sqrt(3))^(2*n) + (2 - sqrt(3))^(2*n) - 2;
a(4*n - 1) = 1/2*{(2 + sqrt(3) )^(2*n + 1) + (2 - sqrt(3))^(2*n + 1)} - 2.
a(4*n - 3) = 12*A098301(n) = 12*A001353(n)^2 = 4*A007654(n);
a(4*n - 1) = 24*A076139(n) = 12*A217855 = 8*A076140(n) = 6*A123480(n) = 3*A045899(n).
O.g.f.: 2 + x^2/(1 - x^2) + 12*x*(1 + x^2)^2/(1 - 15*x^4 + 15*x^8 - x^12) = 2 + 12*x + x^2 + 24*x^3 + x^4 + 192*x^5 + ....
O.g.f.: (x^10-2*x^8-14*x^6+28*x^4-12*x^3+x^2-12*x-2) / ((x-1)*(x+1)*(x^4-4*x^2+1)*(x^4+4*x^2+1)). - Colin Barker, Jan 10 2014
Showing 1-10 of 13 results. Next