cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A041006 Numerators of continued fraction convergents to sqrt(6).

Original entry on oeis.org

2, 5, 22, 49, 218, 485, 2158, 4801, 21362, 47525, 211462, 470449, 2093258, 4656965, 20721118, 46099201, 205117922, 456335045, 2030458102, 4517251249, 20099463098, 44716177445, 198964172878, 442644523201, 1969542265682, 4381729054565, 19496458483942
Offset: 0

Views

Author

Keywords

Comments

Interspersion of 2 sequences, 2*A054320 and A001079. - Gerry Martens, Jun 10 2015

Crossrefs

Cf. A041007 (denominators).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041008 (m=7), A041010 (m=8), A005667 (m=10), A041014 (m=11), ..., A042936 (m=1000).

Programs

  • Magma
    I:=[2, 5, 22, 49]; [n le 4 select I[n] else 10*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 10 2015
    
  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[6],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
    LinearRecurrence[{0, 10, 0, -1}, {2, 5, 22, 49}, 50] (* Vincenzo Librandi, Jun 10 2015 *)
  • PARI
    A41006=contfracpnqn(c=contfrac(sqrt(6)), #c)[1, ][^-1] \\ Discard possibly incorrect last element. NB: a(n)=A41006[n+1]! M. F. Hasler, Nov 01 2019
    
  • PARI
    \\ For correct index & more terms:
    A041006(n)={n<#A041006|| A041006=extend(A041006, [2, 10; 4, -1], n\.8); A041006[n+1]}
    extend(A, c, N)={for(n=#A+1, #A=Vec(A, N), A[n]=[A[n-i]|i<-c[, 1]]*c[, 2]); A} \\ M. F. Hasler, Nov 01 2019

Formula

From M. F. Hasler, Feb 13 2009: (Start)
a(2n) = 2*A142238(2n) = A041038(2n)/2;
a(2n-1) = A142238(2n-1) = A041038(2n-1) = A001079(n). (End)
G.f.: (2 + 5*x + 2*x^2 - x^3)/(1 - 10*x^2 + x^4).
a(n) = ((2 + sqrt(6))^(n+1) + (2 - sqrt(6))^(n+1))/2^(ceiling(n/2) + 1). - Robert FERREOL, Oct 13 2024
E.g.f.: sqrt(2)*sinh(sqrt(2)*x)*(cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)) + cosh(sqrt(2)*x)*(2*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)). - Stefano Spezia, Oct 14 2024

Extensions

More terms from Vincenzo Librandi, Jun 10 2015

A041008 Numerators of continued fraction convergents to sqrt(7).

Original entry on oeis.org

2, 3, 5, 8, 37, 45, 82, 127, 590, 717, 1307, 2024, 9403, 11427, 20830, 32257, 149858, 182115, 331973, 514088, 2388325, 2902413, 5290738, 8193151, 38063342, 46256493, 84319835, 130576328, 606625147, 737201475, 1343826622, 2081028097, 9667939010, 11748967107, 21416906117
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010465, A041009 (denominators), A266698 (quadrisection), A001081 (quadrisection).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041006 (m=6), A041010 (m=8), A005667 (m=10), A041014 (m=11), A041016 (m=12), ..., A042934 (m=999), A042936 (m=1000).

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[7],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
    Numerator[Convergents[Sqrt[7], 30]] (* Vincenzo Librandi, Oct 28 2013 *)
    LinearRecurrence[{0,0,0,16,0,0,0,-1},{2,3,5,8,37,45,82,127},40] (* Harvey P. Dale, Jul 23 2021 *)
  • PARI
    A041008=contfracpnqn(c=contfrac(sqrt(7)),#c)[1,][^-1] \\ Discard possibly incorrect last element. NB: a(n)=A041008[n+1]! For more terms use:
    A041008(n)={n<#A041008|| A041008=extend(A041008, [4, 16; 8, -1], n\.8); A041008[n+1]}
    extend(A,c,N)={for(n=#A+1, #A=Vec(A, N), A[n]=[A[n-i]|i<-c[,1]]*c[,2]); A} \\ (End)

Formula

G.f.: (2 + 3*x + 5*x^2 + 8*x^3 + 5*x^4 - 3*x^5 + 2*x^6 - x^7)/(1 - 16*x^4 + x^8).

A041014 Numerators of continued fraction convergents to sqrt(11).

Original entry on oeis.org

3, 10, 63, 199, 1257, 3970, 25077, 79201, 500283, 1580050, 9980583, 31521799, 199111377, 628855930, 3972246957, 12545596801, 79245827763, 250283080090, 1580944308303, 4993116004999, 31539640338297
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010468, A041015 (denominators).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041006 (m=6), A041008 (m=7), A041010 (m=8), A005667 (m=10), A041016 (m=12), ..., A042936 (m=1000).

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[11],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
    Numerator[Convergents[Sqrt[11], 30]] (* Vincenzo Librandi, Oct 28 2013 *)
  • PARI
    A041014=contfracpnqn(c=contfrac(sqrt(11)), #c)[1,][^-1] \\ Discard last element which may be incorrect. Use e.g. \p999 to get more terms, or extend as follows:
    {A041014_upto(N,A=Vec(A041014,N))=for(n=#A041014+1,N, A[n]=20*A[n-2]-A[n-4]); A041014=A} \\ M. F. Hasler, Nov 01 2019

Formula

G.f.: (3 + 10*x + 3*x^2 - x^3)/(1 - 20*x^2 + x^4).

A041010 Numerators of continued fraction convergents to sqrt(8).

Original entry on oeis.org

2, 3, 14, 17, 82, 99, 478, 577, 2786, 3363, 16238, 19601, 94642, 114243, 551614, 665857, 3215042, 3880899, 18738638, 22619537, 109216786, 131836323, 636562078, 768398401, 3710155682, 4478554083, 21624372014, 26102926097, 126036076402, 152139002499
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A040005 (continued fraction), A041011 (denominators), A010466 (decimals).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041006 (m=6), A041008 (m=7), A005667 (m=10), A041014 (m=11), A041016 (m=12), ..., A042934 (m=999), A042936 (m=1000).

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[8],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011*)
    CoefficientList[Series[(2 + 3*x + 2*x^2 - x^3)/(1 - 6*x^2 + x^4), {x, 0, 30}], x]  (* Vincenzo Librandi, Oct 28 2013 *)
    a0[n_] := -((3-2*Sqrt[2])^n*(1+Sqrt[2]))+(-1+Sqrt[2])*(3+2*Sqrt[2])^n // Simplify
    a1[n_] := ((3-2*Sqrt[2])^n+(3+2*Sqrt[2])^n)/2 // Simplify
    Flatten[MapIndexed[{a0[#], a1[#]} &,Range[20]]] (* Gerry Martens, Jul 11 2015 *)
  • PARI
    A041010=contfracpnqn(c=contfrac(sqrt(8)),#c)[1,][^-1] \\ Discard possibly incorrect last element. NB: a(n)=A041010[n+1]! For more terms use:
    A041010(n)={n<#A041010|| A041010=extend(A041010, [-1,0,6,0]~, n\.8); A041010[n+1]}
    extend(A,c,N)={for(n=#A+1,#A=Vec(A,N), A[n]=A[n-#c..n-1]*c);A} \\ (End)

Formula

a(n) = 6*a(n-2) - a(n-4).
a(2n) = a(2n-1) + a(2n-2), a(2n+1) = 4*a(2n) + a(2n-1).
a(2n) = A001333(2n), a(2n+1) = 2*A001333(2n+1).
G.f.: (2+3*x+2*x^2-x^3)/(1-6*x^2+x^4).
a(n) = A001333(n+1)*A000034(n+1). - R. J. Mathar, Jul 08 2009
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = -((3-2*sqrt(2))^n*(1+sqrt(2))) + (-1+sqrt(2))*(3+2*sqrt(2))^n.
a1(n) = ((3-2*sqrt(2))^n + (3+2*sqrt(2))^n)/2. (End)

Extensions

Entry improved by Michael Somos
Initial term 1 removed and b-file, program and formulas adapted by Georg Fischer, Jul 01 2019
Cross-references added by M. F. Hasler, Nov 02 2019

A042934 Numerators of continued fraction convergents to sqrt(999).

Original entry on oeis.org

31, 32, 63, 95, 158, 885, 5468, 6353, 37233, 80819, 441328, 522147, 3574210, 18393197, 21967407, 40360604, 62328011, 102688615, 6429022141, 6531710756, 12960732897, 19492443653, 32453176550
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A042935 (denominators).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041006 (m=6), A041008 (m=7), A041010 (m=8), A005667 (m=10), A041014 (m=11), ..., A042936 (m=1000).

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[999], 30]] (* Vincenzo Librandi, Dec 10 2013 *)
  • PARI
    A42934=contfracpnqn(c=contfrac(sqrt(999)), #c)[1,][^-1] \\ Discard possibly incorrect last element. NB: a(n) = A42934[n+1]! For more terms, use:
    A042934(n)={n<#A42934 || A42934_upto(n+10); A42934[n+1]}
    {A42934_upto(N,A=Vec(A42934,N))=for(n=#A42934+1,N, A[n]=205377230*A[n-18]-A[n-36]); A42934=A} \\ M. F. Hasler, Nov 01 2019

Formula

a(n) = 205377230*a(n-18) - a(n-36). - Wesley Ivan Hurt, May 28 2021

A042937 Denominators of continued fraction convergents to sqrt(1000).

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 53, 114, 281, 4329, 8939, 22207, 142181, 164388, 306569, 470957, 777526, 1248483, 78183472, 79431955, 157615427, 237047382, 394662809, 631710191, 4184923955, 9001558101, 22188040157, 341822160456, 705832361069, 1753486882594
Offset: 0

Views

Author

Keywords

Examples

			sqrt(1000) = 31.62... = 31 + 1/(1 + 1/(1 + ...)) with convergents 31/1, 32/1, 63/2, 95/3, 158/5, ... - _M. F. Hasler_, Nov 02 2019
		

Crossrefs

Cf. A042936 (numerators), A040968 (continued fraction), A010467 (decimals).
Analog for sqrt(m): A000129 (m=2), A002530 (m=3), A001076 (m=5), A041007 (m=6), A041009 (m=7), A041011 (m=8), A005663 (m=10), A041015 (m=11), A041017 (m=12), ..., A042933 (m=998), A042935 (m=999).

Programs

  • Mathematica
    Denominator[Convergents[Sqrt[1000], 30]] (* Vincenzo Librandi, Feb 01 2014 *)
  • PARI
    A42937=contfracpnqn(c=contfrac(sqrt(1000)),#c-1)[2,] \\ Possibly incorrect last term ignored. NB: a(n) = A42937[n+1]. For more terms use e.g. \p999, or compute any a(n) from this as in A042936. - M. F. Hasler, Nov 01 2019

Extensions

More terms from Vincenzo Librandi, Feb 01 2014

A040968 Continued fraction for sqrt(1000).

Original entry on oeis.org

31, 1, 1, 1, 1, 1, 6, 2, 2, 15, 2, 2, 6, 1, 1, 1, 1, 1, 62, 1, 1, 1, 1, 1, 6, 2, 2, 15, 2, 2, 6, 1, 1, 1, 1, 1, 62, 1, 1, 1, 1, 1, 6, 2, 2, 15, 2, 2, 6, 1, 1, 1, 1, 1, 62, 1, 1, 1, 1, 1, 6, 2, 2, 15, 2, 2, 6, 1, 1, 1, 1, 1, 62, 1, 1, 1, 1, 1, 6, 2, 2, 15, 2, 2, 6, 1, 1, 1, 1
Offset: 0

Views

Author

Keywords

Comments

After the initial term, periodic with period (1, 1, 1, 1, 1, 6, 2, 2, 15, 2, 2, 6, 1, 1, 1, 1, 1, 62) of length 18. - M. F. Hasler, Nov 02 2019

Crossrefs

Cf. A042936, A042937 (numerators & denominators of convergents).

Programs

  • Maple
    with(numtheory): Digits := 300: convert(evalf(sqrt(1000)),confrac);
  • Mathematica
    ContinuedFraction[Sqrt[1000],120] (* or *) PadRight[{31},120,{62,1,1,1,1,1,6,2,2,15,2,2,6,1,1,1,1,1}] (* Harvey P. Dale, Aug 22 2018 *)
  • PARI
    A40968=contfrac(sqrt(1000)) \\ For illustration. Better:
    A040968(n)={1+if(n%3, abs(n\/18*18-n)>6, n%9, !(n%6)*5, n%18, 14, n, 61, 30)} \\ M. F. Hasler, Nov 02 2019
Showing 1-7 of 7 results.