cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A001079 a(n) = 10*a(n-1) - a(n-2); a(0) = 1, a(1) = 5.

Original entry on oeis.org

1, 5, 49, 485, 4801, 47525, 470449, 4656965, 46099201, 456335045, 4517251249, 44716177445, 442644523201, 4381729054565, 43374646022449, 429364731169925, 4250272665676801, 42073361925598085, 416483346590304049
Offset: 0

Views

Author

Keywords

Comments

Also gives solutions to the equation x^2-1=floor(x*r*floor(x/r)) where r=sqrt(6). - Benoit Cloitre, Feb 14 2004
Appears to give all solutions >1 to the equation x^2=ceiling(x*r*floor(x/r)) where r=sqrt(6). - Benoit Cloitre, Feb 24 2004
a(n) and b(n) (A004189) are the nonnegative proper solutions to the Pell equation a(n)^2 - 6*(2*b(n))^2 = +1, n >= 0. The formula given below by Gregory V. Richardson follows. - Wolfdieter Lang, Jun 26 2013
a(n) are the integer square roots of (A032528 + 1). They are also the values of m where (A032528(m) - 1) has integer square roots. See A122653 for the integer square roots of (A032528 - 1), and see A122652 for the values of m where (A032528(m) + 1) has integer square roots. - Richard R. Forberg, Aug 05 2013
a(n) are also the values of m where floor(2m^2/3) has integer square roots, excluding m = 0. The corresponding integer square roots are given by A122652(n). - Richard R. Forberg, Nov 21 2013
Except for the first term, positive values of x (or y) satisfying x^2 - 10xy + y^2 + 24 = 0. - Colin Barker, Feb 09 2014
Dickson on page 384 gives the Diophantine equation "24x^2 + 1 = y^2" and later states "y_{n+1} = 10y_n - y_{n-1}" where y_n is this sequence. - Michael Somos, Jun 19 2023

Examples

			Pell equation: n = 0: 1^2 - 24*0^2 = +1, n = 1: 5^2 - 6*(1*2)^2 = 1, n = 2: 49^2 - 6*(2*10)^2 = +1. - _Wolfdieter Lang_, Jun 26 2013
G.f. = 1 + 5*x + 49*x^2 + 485*x^3 + 4801*x^4 + 47525*x^5 + 470449*x^6 + ...
		

References

  • Bastida, Julio R. Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163-166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009) - From N. J. A. Sloane, May 30 2012
  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, p. 384.
  • L. Euler, (E388) Vollstaendige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 374.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • V. Thébault, Les Récréations Mathématiques. Gauthier-Villars, Paris, 1952, p. 281.

Crossrefs

Programs

  • Magma
    I:=[1,5]; [n le 2 select I[n] else 10*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 10 2016
    
  • Maple
    A001079 := proc(n)
        option remember;
        if n <= 1 then
            op(n+1,[1,5]) ;
        else
            10*procname(n-1)-procname(n-2) ;
        end if;
    end proc:
    seq(A001079(n),n=0..20) ; # R. J. Mathar, Apr 30 2017
  • Mathematica
    Table[(-1)^n Round[N[Cos[2 n ArcSin[Sqrt[3]]], 50]], {n, 0, 20}] (* Artur Jasinski, Oct 29 2008 *)
    a[ n_] := ChebyshevT[n, 5]; (* Michael Somos, Aug 24 2014 *)
    CoefficientList[Series[(1-5*x)/(1-10*x+x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
    a[n_] := 3^n*Sum[(2/3)^k*Binomial[2*n, 2*k], {k,0,n}]; Flatten[Table[a[n], {n,0,18}]] (* Detlef Meya, May 21 2024 *)
  • PARI
    {a(n) = subst(poltchebi(n), 'x, 5)}; /* Michael Somos, Sep 05 2006 */
    
  • PARI
    {a(n) = real((5 + 2*quadgen(24))^n)}; /* Michael Somos, Sep 05 2006 */
    
  • PARI
    {a(n) = n = abs(n); polsym(1 - 10*x + x^2, n)[n+1] / 2}; /* Michael Somos, Sep 05 2006 */
    
  • PARI
    x='x+O('x^30); Vec((1-5*x)/(1-10*x+x^2)) \\ G. C. Greubel, Dec 20 2017

Formula

For all members x of the sequence, 6*x^2 -6 is a square. Limit_{n->infinity} a(n)/a(n-1) = 5 + 2*sqrt(6). - Gregory V. Richardson, Oct 13 2002
a(n) = T(n, 5) = (S(n, 10)-S(n-2, 10))/2 with S(n, x) := U(n, x/2) and T(n), resp. U(n, x), are Chebyshev's polynomials of the first, resp. second, kind. See A053120 and A049310. S(n, 10) = A004189(n+1).
a(n) = sqrt(1+24*A004189(n)^2) (cf. Richardson comment).
a(n)*a(n+3) - a(n+1)*a(n+2) = 240. - Ralf Stephan, Jun 06 2005
Chebyshev's polynomials T(n,x) evaluated at x=5.
G.f.: (1-5*x)/(1-10*x+x^2). - Simon Plouffe in his 1992 dissertation
a(n)= ((5+2*sqrt(6))^n + (5-2*sqrt(6))^n)/2.
a(-n) = a(n).
a(n+1) = 5*a(n) + 2*(6*a(n)^2-6)^(1/2) - Richard Choulet, Sep 19 2007
(sqrt(2)+sqrt(3))^(2*n)=a(n)+A001078(n)*sqrt(6). - Reinhard Zumkeller, Mar 12 2008
a(n+1) = 2*A054320(n) + 3*A138288(n). - Reinhard Zumkeller, Mar 12 2008
a(n) = cosh(2*n* arcsinh(sqrt(2))). - Herbert Kociemba, Apr 24 2008
a(n) = (-1)^n * cos(2*n* arcsin(sqrt(3))). - Artur Jasinski, Oct 29 2008
a(n) = cos(2*n* arccos(sqrt(3))). - Artur Jasinski, Sep 10 2016
a(n) = A142238(2n-1) = A041006(2n-1) = A041038(2n-1), for all n > 0. - M. F. Hasler, Feb 14 2009
2*a(n)^2 = 3*A122652(n)^2 + 2. - Charlie Marion, Feb 01 2013
E.g.f.: cosh(2*sqrt(6)*x)*exp(5*x). - Ilya Gutkovskiy, Sep 10 2016
From Peter Bala, Aug 17 2022: (Start)
a(n) = (1/2)^n * [x^n] ( 10*x + sqrt(1 + 96*x^2) )^n.
The g.f. A(x) satisfies A(2*x) = 1 + x*B'(x)/B(x), where B(x) = 1/sqrt(1 - 20*x + 4*x^2) is the g.f. of A098270.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p >= 3 and positive integers n and k.
Sum_{n >= 1} 1/(a(n) - 3/a(n)) = 1/4.
Sum_{n >= 1} (-1)^(n+1)/(a(n) + 2/a(n)) = 1/6.
Sum_{n >= 1} 1/(a(n)^2 - 3) = 1/4 - 1/sqrt(24). (End)
a(n) = 3^n*Sum_{k=0..n} (2/3)^k*binomial(2*n, 2*k). - Detlef Meya, May 21 2024

Extensions

Chebyshev comments from Wolfdieter Lang, Nov 08 2002

A054320 Expansion of g.f.: (1 + x)/(1 - 10*x + x^2).

Original entry on oeis.org

1, 11, 109, 1079, 10681, 105731, 1046629, 10360559, 102558961, 1015229051, 10049731549, 99482086439, 984771132841, 9748229241971, 96497521286869, 955226983626719, 9455772314980321, 93602496166176491, 926569189346784589, 9172089397301669399, 90794324783669909401
Offset: 0

Views

Author

Keywords

Comments

Chebyshev's even-indexed U-polynomials evaluated at sqrt(3).
a(n)^2 is a star number (A003154).
Any k in the sequence has the successor 5*k + 2*sqrt(3(2*k^2 + 1)). - Lekraj Beedassy, Jul 08 2002
{a(n)} give the values of x solving: 3*y^2 - 2*x^2 = 1. Corresponding values of y are given by A072256(n+1). x + y = A001078(n+1). - Richard R. Forberg, Nov 21 2013
The aerated sequence (b(n))n>=1 = [1, 0, 11, 0, 109, 0, 1079, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -8, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047. - Peter Bala, Mar 22 2015

Examples

			a(1)^2 = 121 is the 5th star number (A003154).
		

Crossrefs

A member of the family A057078, A057077, A057079, A005408, A002878, A001834, A030221, A002315, A033890, A057080, A057081, A054320, which are the expansions of (1+x) / (1-kx+x^2) with k = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. - Philippe Deléham, May 04 2004
Cf. A138281. Cf. A100047.
Cf. A142238.

Programs

  • GAP
    a:=[1,11];; for n in [3..30] do a[n]:=10*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jul 22 2019
  • Magma
    I:=[1,11]; [n le 2 select I[n] else 10*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 22 2015
    
  • Mathematica
    CoefficientList[Series[(1+x)/(1-10x+x^2), {x,0,30}], x] (* Vincenzo Librandi, Mar 22 2015 *)
    a[c_, n_] := Module[{},
       p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
       d := Numerator[Convergents[Sqrt[c], n p]];
       t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
       Return[t];
    ] (* Complement of A142238 *)
    a[3/2, 20] (* Gerry Martens, Jun 07 2015 *)
  • PARI
    a(n)=subst(poltchebi(n+1)-poltchebi(n),x,5)/4;
    

Formula

(a(n)-1)^2 + a(n)^2 + (a(n)+1)^2 = b(n)^2 + (b(n)+1)^2 = c(n), where b(n) is A031138 and c(n) is A007667.
a(n) = 10*a(n-1) - a(n-2).
a(n) = (sqrt(6) - 2)/4*(5 + 2*sqrt(6))^(n+1) - (sqrt(6) + 2)/4*(5 - 2*sqrt(6))^(n+1).
a(n) = U(2*(n-1), sqrt(3)) = S(n-1, 10) + S(n-2, 10) with Chebyshev's U(n, x) and S(n, x) := U(n, x/2) polynomials and S(-1, x) := 0. S(n, 10) = A004189(n+1), n >= 0.
6*a(n)^2 + 3 is a square. Limit_{n->oo} a(n)/a(n-1) = 5 + 2*sqrt(6). - Gregory V. Richardson, Oct 13 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i), then (-1)^n*q(n, -12) = a(n). - Benoit Cloitre, Nov 10 2002
a(n) = L(n,-10)*(-1)^n, where L is defined as in A108299; see also A072256 for L(n,+10). - Reinhard Zumkeller, Jun 01 2005
From Reinhard Zumkeller, Mar 12 2008: (Start)
(sqrt(2) + sqrt(3))^(2*n+1) = a(n)*sqrt(2) + A138288(n)*sqrt(3);
a(n) = A138288(n) + A001078(n).
a(n) = A001079(n) + 3*A001078(n). (End)
a(n) = A142238(2n) = A041006(2n)/2 = A041038(2n)/4. - M. F. Hasler, Feb 14 2009
a(n) = sqrt(A006061(n)). - Zak Seidov, Oct 22 2012
a(n) = sqrt((3*A072256(n)^2 - 1)/2). - T. D. Noe, Oct 23 2012
(sqrt(3) + sqrt(2))^(2*n+1) - (sqrt(3) - sqrt(2))^(2*n+1) = a(n)*sqrt(8). - Bruno Berselli, Oct 29 2019
a(n) = A004189(n)+A004189(n+1). - R. J. Mathar, Oct 01 2021
E.g.f.: exp(5*x)*(2*cosh(2*sqrt(6)*x) + sqrt(6)*sinh(2*sqrt(6)*x))/2. - Stefano Spezia, May 16 2023
From Peter Bala, May 09 2025: (Start)
a(n) = Dir(n, 5), where Dir(n, x) denotes the n-th row polynomial of the triangle A244419.
a(n)^2 - 10*a(n)*a(n+1) + a(n+1)^2 = 12.
More generally, for arbitrary x, a(n+x)^2 - 10*a(n+x)*a(n+x+1) + a(n+x+1)^2 = 12 with a(n) := (sqrt(6) - 2)/4*(5 + 2*sqrt(6))^(n+1) - (sqrt(6) + 2)/4*(5 - 2*sqrt(6))^(n+1) as given above.
a(n+1/2) = sqrt(3) * A001078(n+1).
a(n+3/4) + a(n+1/4) = sqrt(6)*sqrt(sqrt(3) + 1) * A001078(n+1).
a(n+3/4) - a(n+1/4) = sqrt(sqrt(3) - 1) * A001079(n+1).
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/12 (telescoping series: for n >= 1, 1/(a(n) - 1/a(n)) = 1/A004291(n) + 1/A004291(n+1)).
Product_{n >= 1} (a(n) + 1)/(a(n) - 1) = sqrt(3/2) (telescoping product: Product_{n = 1..k} ((a(n) + 1)/(a(n) - 1))^2 = 3/2 * (1 - 1/A171640(k+2))). (End)

Extensions

Chebyshev comments from Wolfdieter Lang, Oct 31 2002

A142238 Numerators of continued fraction convergents to sqrt(3/2).

Original entry on oeis.org

1, 5, 11, 49, 109, 485, 1079, 4801, 10681, 47525, 105731, 470449, 1046629, 4656965, 10360559, 46099201, 102558961, 456335045, 1015229051, 4517251249, 10049731549, 44716177445, 99482086439, 442644523201, 984771132841, 4381729054565, 9748229241971
Offset: 0

Views

Author

N. J. A. Sloane, Oct 05 2008, following a suggestion from Rob Miller (rmiller(AT)AmtechSoftware.net)

Keywords

Comments

From Charlie Marion, Jan 07 2009: (Start)
In general, denominators, a(k,n) and numerators, b(k,n), of continued
fraction convergents to sqrt((k+1)/k) may be found as follows:
a(k,0) = 1, a(k,1) = 2k; for n>0, a(k,2n) = 2*a(k,2n-1)+a(k,2n-2)
and a(k,2n+1)=(2k)*a(k,2n)+a(k,2n-1);
b(k,0) = 1, b(k,1) = 2k+1; for n>0, b(k,2n) = 2*b(k,2n-1)+b(k,2n-2)
and b(k,2n+1)=(2k)*b(k,2n)+b(k,2n-1).
For example, the convergents to sqrt(3/2) start 1/1, 5/4, 11/9,
49/40, 109/89.
In general, if a(k,n) and b(k,n) are the denominators and numerators,
respectively, of continued fraction convergents to sqrt((k+1)/k)
as defined above, then
k*a(k,2n)^2-a(k,2n-1)*a(k,2n+1)=k=k*a(k,2n-2)*a(k,2n)-a(k,2n-1)^2 and
b(k,2n-1)*b(k,2n+1)-k*b(k,2n)^2=k+1=b(k,2n-1)^2-k*b(k,2n-2)*b(k,2n);
for example, if k=2 and n=3, then b(2,n)=a(n) and
2*a(2,6)^2-a(2,5)*a(2,7)=2*881^2-396*3920=2;
2*a(2,4)*a(2,6)-a(2,5)^2=2*89*881-396^2=2;
b(2,5)*b(2,7)-2*b(2,6)^2=485*4801-2*1079^2=3;
b(2,5)^2-2*b(2,4)*b(2,6)=485^2-2*109*1079=3.

Examples

			The initial convergents are 1, 5/4, 11/9, 49/40, 109/89, 485/396, 1079/881, 4801/3920, 10681/8721, 47525/38804, 105731/86329, ...
		

Crossrefs

Programs

  • Maple
    with(numtheory): cf := cfrac (sqrt(3)/sqrt(2),100): [seq(nthnumer(cf,i), i=0..50)]; [seq(nthdenom(cf,i), i=0..50)]; [seq(nthconver(cf,i), i=0..50)];
  • Mathematica
    Numerator[Convergents[Sqrt[3/2], 30]] (* Bruno Berselli, Nov 11 2013 *)
    LinearRecurrence[{0,10,0,-1},{1,5,11,49},30] (* Harvey P. Dale, Dec 30 2017 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,10,0]^n*[1;5;11;49])[1,1] \\ Charles R Greathouse IV, Jun 21 2015

Formula

G.f.'s for numerators and denominators are -(1+5*x+x^2-x^3)/(-1-x^4+10*x^2) and -(1+4*x-x^2)/(-1-x^4+10*x^2).
a(2n) = A041006(2n)/2 = A054320(n), a(2n-1) = A041006(2n-1) = A041038(2n-1) = A001079(n). - M. F. Hasler, Feb 14 2009

A041008 Numerators of continued fraction convergents to sqrt(7).

Original entry on oeis.org

2, 3, 5, 8, 37, 45, 82, 127, 590, 717, 1307, 2024, 9403, 11427, 20830, 32257, 149858, 182115, 331973, 514088, 2388325, 2902413, 5290738, 8193151, 38063342, 46256493, 84319835, 130576328, 606625147, 737201475, 1343826622, 2081028097, 9667939010, 11748967107, 21416906117
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010465, A041009 (denominators), A266698 (quadrisection), A001081 (quadrisection).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041006 (m=6), A041010 (m=8), A005667 (m=10), A041014 (m=11), A041016 (m=12), ..., A042934 (m=999), A042936 (m=1000).

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[7],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
    Numerator[Convergents[Sqrt[7], 30]] (* Vincenzo Librandi, Oct 28 2013 *)
    LinearRecurrence[{0,0,0,16,0,0,0,-1},{2,3,5,8,37,45,82,127},40] (* Harvey P. Dale, Jul 23 2021 *)
  • PARI
    A041008=contfracpnqn(c=contfrac(sqrt(7)),#c)[1,][^-1] \\ Discard possibly incorrect last element. NB: a(n)=A041008[n+1]! For more terms use:
    A041008(n)={n<#A041008|| A041008=extend(A041008, [4, 16; 8, -1], n\.8); A041008[n+1]}
    extend(A,c,N)={for(n=#A+1, #A=Vec(A, N), A[n]=[A[n-i]|i<-c[,1]]*c[,2]); A} \\ (End)

Formula

G.f.: (2 + 3*x + 5*x^2 + 8*x^3 + 5*x^4 - 3*x^5 + 2*x^6 - x^7)/(1 - 16*x^4 + x^8).

A041007 Denominators of continued fraction convergents to sqrt(6).

Original entry on oeis.org

1, 2, 9, 20, 89, 198, 881, 1960, 8721, 19402, 86329, 192060, 854569, 1901198, 8459361, 18819920, 83739041, 186298002, 828931049, 1844160100, 8205571449, 18255302998, 81226783441, 180708869880
Offset: 0

Views

Author

Keywords

Comments

sqrt(6) = 4/2 + 4/9 + 4/(9*89) + 4/(89*881) + 4/(881*8721), ...; where sqrt(6) = 2.4494897427... and the sum of the first 5 terms of this series = 2.449489737... - Gary W. Adamson, Dec 21 2007
sqrt(6) = 2 + continued fraction [2, 4, 2, 4, 2, 4, ...] = 4/2 + 4/9 + 4/(9*89) + 4/(89*881) + 4/(881*8721) + ... - Gary W. Adamson, Dec 21 2007
Interspersion of 2 sequences, A072256 and 2*A004189. - Gerry Martens, Jun 10 2015
For n > 0, a(n) equals the permanent of the n X n tridiagonal matrix with the main diagonal alternating sequence [2, 4, 2, 4, ...] and 1's along the superdiagonal and the subdiagonal. - Rogério Serôdio, Apr 01 2018

Crossrefs

Programs

Formula

G.f.: (1+2*x-x^2)/(1-10*x^2+x^4). - Colin Barker, Dec 31 2011
From Rogério Serôdio, Apr 01 2018: (Start)
Recurrence formula: a(n) = (3 + (-1)^n)*a(n-1) + a(n-2), a(0) = 1, a(1) = 2.
Some properties:
(1) a(n)^2 - a(n-2)^2 = (3+(-1)^n)*a(2*n-1), for n > 1;
(2) a(2*n+1) = a(n)*(a(n+1) + a(n-1)), for n > 0;
(3) a(2*n) = A142239(2*n), for n >= 0;
(4) a(2*n+1) = A041007(2*n+1)/2, for n >= 0;
(5) a(2*n-1)*A142239(2*n+1) = a(n)^2 - 1, for n > 0;
(6) a(2*n) = a(n)*A142239(n) + a(n-1)*A142239(n-1), for n > 0;
(7) Sum_{k=0..n} a(2*k+1)*(A142239(2*k) + A142239(2*(k+1))) = Sum_{k=0..n} a(3+4*k);
(8) Sum_{k=0..n} (a(2*k-1) + a(2*k+1))*A142239(2*k) = Sum_{k=0..n} A142239(3+4*k). (End)
a(n) = ((2 + sqrt(6))^(n+1) - (2 - sqrt(6))^(n+1))/(sqrt(6) * 2^(ceiling(n/2) + 1)). - Robert FERREOL, Oct 14 2024

A041014 Numerators of continued fraction convergents to sqrt(11).

Original entry on oeis.org

3, 10, 63, 199, 1257, 3970, 25077, 79201, 500283, 1580050, 9980583, 31521799, 199111377, 628855930, 3972246957, 12545596801, 79245827763, 250283080090, 1580944308303, 4993116004999, 31539640338297
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010468, A041015 (denominators).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041006 (m=6), A041008 (m=7), A041010 (m=8), A005667 (m=10), A041016 (m=12), ..., A042936 (m=1000).

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[11],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
    Numerator[Convergents[Sqrt[11], 30]] (* Vincenzo Librandi, Oct 28 2013 *)
  • PARI
    A041014=contfracpnqn(c=contfrac(sqrt(11)), #c)[1,][^-1] \\ Discard last element which may be incorrect. Use e.g. \p999 to get more terms, or extend as follows:
    {A041014_upto(N,A=Vec(A041014,N))=for(n=#A041014+1,N, A[n]=20*A[n-2]-A[n-4]); A041014=A} \\ M. F. Hasler, Nov 01 2019

Formula

G.f.: (3 + 10*x + 3*x^2 - x^3)/(1 - 20*x^2 + x^4).

A042936 Numerators of continued fraction convergents to sqrt(1000).

Original entry on oeis.org

31, 32, 63, 95, 158, 253, 1676, 3605, 8886, 136895, 282676, 702247, 4496158, 5198405, 9694563, 14892968, 24587531, 39480499, 2472378469, 2511858968, 4984237437, 7496096405, 12480333842, 19976430247, 132338915324, 284654260895, 701647437114, 10809365817605, 22320379072324
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A042937 (denominators).
Analog for sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041006 (m=6), A041008 (m=7), A041010 (m=8), A005667 (m=10), A041014 (m=11), ..., A042934 (m=999).

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[1000], 30]] (* Harvey P. Dale, Oct 29 2013 *)
  • PARI
    A42936=contfracpnqn(c=contfrac(sqrt(1000)), #c)[1,][^-1] \\ Discards possibly incorrect last term. NB: a(n)=A42936[n+1]. Could be extended using: {A42936=concat(A42936, 78960998*A42936[-18..-1]-A42936[-36..-19])}
    \\ But terms with arbitrarily large indices can be computed using:
    A042936(n)={[A42936[n%18+i]|i<-[1, 19]]*([0, -1; 1, 78960998]^(n\18))[,1]} \\ Faster but longer with n=divrem(n,18). (End)

A041010 Numerators of continued fraction convergents to sqrt(8).

Original entry on oeis.org

2, 3, 14, 17, 82, 99, 478, 577, 2786, 3363, 16238, 19601, 94642, 114243, 551614, 665857, 3215042, 3880899, 18738638, 22619537, 109216786, 131836323, 636562078, 768398401, 3710155682, 4478554083, 21624372014, 26102926097, 126036076402, 152139002499
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A040005 (continued fraction), A041011 (denominators), A010466 (decimals).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041006 (m=6), A041008 (m=7), A005667 (m=10), A041014 (m=11), A041016 (m=12), ..., A042934 (m=999), A042936 (m=1000).

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[8],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011*)
    CoefficientList[Series[(2 + 3*x + 2*x^2 - x^3)/(1 - 6*x^2 + x^4), {x, 0, 30}], x]  (* Vincenzo Librandi, Oct 28 2013 *)
    a0[n_] := -((3-2*Sqrt[2])^n*(1+Sqrt[2]))+(-1+Sqrt[2])*(3+2*Sqrt[2])^n // Simplify
    a1[n_] := ((3-2*Sqrt[2])^n+(3+2*Sqrt[2])^n)/2 // Simplify
    Flatten[MapIndexed[{a0[#], a1[#]} &,Range[20]]] (* Gerry Martens, Jul 11 2015 *)
  • PARI
    A041010=contfracpnqn(c=contfrac(sqrt(8)),#c)[1,][^-1] \\ Discard possibly incorrect last element. NB: a(n)=A041010[n+1]! For more terms use:
    A041010(n)={n<#A041010|| A041010=extend(A041010, [-1,0,6,0]~, n\.8); A041010[n+1]}
    extend(A,c,N)={for(n=#A+1,#A=Vec(A,N), A[n]=A[n-#c..n-1]*c);A} \\ (End)

Formula

a(n) = 6*a(n-2) - a(n-4).
a(2n) = a(2n-1) + a(2n-2), a(2n+1) = 4*a(2n) + a(2n-1).
a(2n) = A001333(2n), a(2n+1) = 2*A001333(2n+1).
G.f.: (2+3*x+2*x^2-x^3)/(1-6*x^2+x^4).
a(n) = A001333(n+1)*A000034(n+1). - R. J. Mathar, Jul 08 2009
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = -((3-2*sqrt(2))^n*(1+sqrt(2))) + (-1+sqrt(2))*(3+2*sqrt(2))^n.
a1(n) = ((3-2*sqrt(2))^n + (3+2*sqrt(2))^n)/2. (End)

Extensions

Entry improved by Michael Somos
Initial term 1 removed and b-file, program and formulas adapted by Georg Fischer, Jul 01 2019
Cross-references added by M. F. Hasler, Nov 02 2019

A041038 Numerators of continued fraction convergents to sqrt(24).

Original entry on oeis.org

4, 5, 44, 49, 436, 485, 4316, 4801, 42724, 47525, 422924, 470449, 4186516, 4656965, 41442236, 46099201, 410235844, 456335045, 4060916204, 4517251249, 40198926196, 44716177445, 397928345756
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(2n) = 2*A041006(2n) ; a(2n-1) = A041006(2n-1) = A001079(n). [From M. F. Hasler, Feb 13 2009]
G.f.: (4+5*x+4*x^2-x^3)/(1-10*x^2+x^4)

A042934 Numerators of continued fraction convergents to sqrt(999).

Original entry on oeis.org

31, 32, 63, 95, 158, 885, 5468, 6353, 37233, 80819, 441328, 522147, 3574210, 18393197, 21967407, 40360604, 62328011, 102688615, 6429022141, 6531710756, 12960732897, 19492443653, 32453176550
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A042935 (denominators).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041006 (m=6), A041008 (m=7), A041010 (m=8), A005667 (m=10), A041014 (m=11), ..., A042936 (m=1000).

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[999], 30]] (* Vincenzo Librandi, Dec 10 2013 *)
  • PARI
    A42934=contfracpnqn(c=contfrac(sqrt(999)), #c)[1,][^-1] \\ Discard possibly incorrect last element. NB: a(n) = A42934[n+1]! For more terms, use:
    A042934(n)={n<#A42934 || A42934_upto(n+10); A42934[n+1]}
    {A42934_upto(N,A=Vec(A42934,N))=for(n=#A42934+1,N, A[n]=205377230*A[n-18]-A[n-36]); A42934=A} \\ M. F. Hasler, Nov 01 2019

Formula

a(n) = 205377230*a(n-18) - a(n-36). - Wesley Ivan Hurt, May 28 2021
Showing 1-10 of 14 results. Next