cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A042937 Denominators of continued fraction convergents to sqrt(1000).

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 53, 114, 281, 4329, 8939, 22207, 142181, 164388, 306569, 470957, 777526, 1248483, 78183472, 79431955, 157615427, 237047382, 394662809, 631710191, 4184923955, 9001558101, 22188040157, 341822160456, 705832361069, 1753486882594
Offset: 0

Views

Author

Keywords

Examples

			sqrt(1000) = 31.62... = 31 + 1/(1 + 1/(1 + ...)) with convergents 31/1, 32/1, 63/2, 95/3, 158/5, ... - _M. F. Hasler_, Nov 02 2019
		

Crossrefs

Cf. A042936 (numerators), A040968 (continued fraction), A010467 (decimals).
Analog for sqrt(m): A000129 (m=2), A002530 (m=3), A001076 (m=5), A041007 (m=6), A041009 (m=7), A041011 (m=8), A005663 (m=10), A041015 (m=11), A041017 (m=12), ..., A042933 (m=998), A042935 (m=999).

Programs

  • Mathematica
    Denominator[Convergents[Sqrt[1000], 30]] (* Vincenzo Librandi, Feb 01 2014 *)
  • PARI
    A42937=contfracpnqn(c=contfrac(sqrt(1000)),#c-1)[2,] \\ Possibly incorrect last term ignored. NB: a(n) = A42937[n+1]. For more terms use e.g. \p999, or compute any a(n) from this as in A042936. - M. F. Hasler, Nov 01 2019

Extensions

More terms from Vincenzo Librandi, Feb 01 2014

A190567 Continued fraction expansion of 46*sqrt(46).

Original entry on oeis.org

311, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622
Offset: 0

Views

Author

Bruno Berselli, May 13 2011

Keywords

Crossrefs

Programs

  • Magma
    [311] cat &cat[ [1,76,1,622]: n in [1..18] ];
    
  • Magma
    I:=[311,1,76,1,622]; [n le 5 select I[n] else Self(n-4): n in [1..80]]; // Vincenzo Librandi, Jun 14 2013
  • Mathematica
    ContinuedFraction[46 Sqrt[46], 80] (* or *) PadRight[{311}, 80, {622, 1, 76, 1}]
    CoefficientList[Series[(311 + x + 76 x^2 + x^3 + 311 x^4) / (1 - x^4), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 14 2013 *)
  • PARI
    a(n)=if(n,[622,1,76,1][n%4+1],311) \\ Charles R Greathouse IV, May 13 2011
    

Formula

G.f.: (311+x+76*x^2+x^3+311*x^4)/(1-x^4).
a(n) = 1+3*(1+(-1)^n)*(116+91*i^n)/2 with n>0, i=sqrt(-1) and a(0)=311.
a(n) = (-1513*(n mod 4)+575*((n+1) mod 4)+125*((n+2) mod 4)+2213*((n+3) mod 4))/12 for n>0.
a(n) = a(n-4), n>=5. - Vincenzo Librandi, Jun 14 2013
Showing 1-2 of 2 results.