A321118 T(n,k) = A321119(n) - (-1)^k*A321119(n-2*k)/2 for 0 < k < n, with T(0,0) = 0 and T(n,0) = T(n,n) = A002530(n+1) for n > 0, triangle read by rows; unreduced numerator of the weights of Holladay-Sard's quadrature formula.
0, 1, 1, 3, 10, 3, 4, 11, 11, 4, 11, 32, 26, 32, 11, 15, 43, 37, 37, 43, 15, 41, 118, 100, 106, 100, 118, 41, 56, 161, 137, 143, 143, 137, 161, 56, 153, 440, 374, 392, 386, 392, 374, 440, 153, 209, 601, 511, 535, 529, 529, 535, 511, 601, 209
Offset: 0
Examples
Triangle begins (denominator is factored out): 0; 1/4 1, 1; 1/2 3, 10, 3; 1/8 4, 11, 11, 4; 1/10 11, 32, 26, 32, 11; 1/28 15, 43, 37, 37, 43, 15; 1/38 41, 118, 100, 106, 100, 118, 41; 1/104 56, 161, 137, 143, 143, 137, 161, 56; 1/142 153, 440, 374, 392, 386, 392, 374, 440, 153; 1/388 209, 601, 511, 535, 529, 529, 535, 511, 601, 209; 1/530 ... If f is a continuous function over the interval [0,3], then the quadrature formula yields Integral_{x=0..3} f(x) d(x) = (1/10)*(4*f(0) + 11*f(1) + 11*f(2) + 4*f(3)).
References
- Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.2.
Links
- Franck Maminirina Ramaharo, Rows n = 0..150 of triangle, flattened
- Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, Chapter II The Cubic Spline, Mathematics in Science and Engineering Volume 38 (1967), p. 9-74.
- John C. Holladay, A smoothest curve approximation, Math. Comp. Vol. 11 (1957), 233-243.
- Peter Köhler, On the weights of Sard's quadrature formulas, CALCOLO Vol. 25 (1988), 169-186.
- Leroy F. Meyers and Arthur Sard, Best approximate integration formulas, J. Math. Phys. Vol. 29 (1950), 118-123.
- Arthur Sard, Best approximate integration formulas; best approximation formulas, American Journal of Mathematics Vol. 71 (1949), 80-91.
- Isaac J. Schoenberg, Spline interpolation and best quadrature formulae, Bull. Amer. Math. Soc. Vol. 70 (1964), 143-148.
- Frans Schurer, On natural cubic splines, with an application to numerical integration formulae, EUT report. WSK, Dept. of Mathematics and Computing Science Vol. 70-WSK-04 (1970), 1-32.
Programs
-
Mathematica
alpha = (Sqrt[2] + Sqrt[6])/2; T[0,0] = 0; T[n_, k_] := If[n > 0 && k == 0 || k == n, (alpha^(n + 1) - (-alpha)^(-(n + 1)))/(2*Sqrt[6]*(alpha^n + (-alpha)^(-n))), 1 - (-1)^k*(alpha^(n - 2*k) + (-alpha)^(2*k - n))/(2*(alpha^n + (-alpha)^(-n)))]; a321119[n_] := 2^(-Floor[(n - 1)/2])*((1 - Sqrt[3])^n + (1 + Sqrt[3])^n); Table[FullSimplify[a321119[n]*T[n, k]],{n, 0, 10}, {k, 0, n}] // Flatten
-
Maxima
(b[0] : 0, b[1] : 1, b[2] : 1, b[3] : 3, b[n] := 4*b[n-2] - b[n-4])$ /* A002530 */ d(n) := 2^(-floor((n - 1)/2))*((1 - sqrt(3))^n + (1 + sqrt(3))^n) $ /* A321119 */ T(n, k) := if n = 0 and k = 0 then 0 else if n > 0 and k = 0 or k = n then b[n + 1] else d(n) - (-1)^k*d(n - 2*k)/2$ create_list(ratsimp(T(n, k)), n, 0, 10, k, 0, n);
Formula
T(n,k)/A321119(n) = (alpha^(n + 1) - (-alpha)^(-(n + 1)))/(2*sqrt(6)*(alpha^n + (-alpha)^(-n))) if k = 0 or k = n, and 1 - (-1)^k*(alpha^(n - 2*k) + (-alpha)^(2*k - n))/(2*(alpha^n + (-alpha)^(-n))) if 0 < k < n, where alpha = (sqrt(2) + sqrt(6))/2.
T(n,k) = T(n,n-k).
T(n,k) = 4*T(n-2,k) - T(n-4,k), n >= k + 4.
Sum_{k=0..n} T(n,k)/A321119(n) = n.
Comments