cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 31 results. Next

A003697 Duplicate of A006253.

Original entry on oeis.org

1, 2, 9, 32, 121, 450, 1681, 6272, 23409, 87362, 326041, 1216800, 4541161, 16947842
Offset: 0

Views

Author

Keywords

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

A006125 a(n) = 2^(n*(n-1)/2).

Original entry on oeis.org

1, 1, 2, 8, 64, 1024, 32768, 2097152, 268435456, 68719476736, 35184372088832, 36028797018963968, 73786976294838206464, 302231454903657293676544, 2475880078570760549798248448, 40564819207303340847894502572032, 1329227995784915872903807060280344576
Offset: 0

Views

Author

Keywords

Comments

Number of graphs on n labeled nodes; also number of outcomes of labeled n-team round-robin tournaments.
Number of perfect matchings of order n Aztec diamond. [see Speyer]
Number of Gelfand-Zeitlin patterns with bottom row [1,2,3,...,n]. [Zeilberger]
For n >= 1 a(n) is the size of the Sylow 2-subgroup of the Chevalley group A_n(2) (sequence A002884). - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 30 2001
From James Propp: (Start)
a(n) is the number of ways to tile the region
o-----o
|.....|
o--o.....o--o
|...........|
o--o...........o--o
|.................|
o--o.................o--o
|.......................|
|.......................|
|.......................|
o--o.................o--o
|.................|
o--o...........o--o
|...........|
o--o.....o--o
|.....|
o-----o
(top-to-bottom distance = 2n) with dominoes like either of
o--o o-----o
|..| or |.....|
|..| o-----o
|..|
o--o
(End)
The number of domino tilings in A006253, A004003, A006125 is the number of perfect matchings in the relevant graphs. There are results of Jockusch and Ciucu that if a planar graph has a rotational symmetry then the number of perfect matchings is a square or twice a square - this applies to these 3 sequences. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 12 2001
Let M_n denotes the n X n matrix with M_n(i,j)=binomial(2i,j); then det(M_n)=a(n+1). - Benoit Cloitre, Apr 21 2002
Smallest power of 2 which can be expressed as the product of n distinct numbers (powers of 2), e.g., a(4) = 1024 = 2*4*8*16. Also smallest number which can be expressed as the product of n distinct powers. - Amarnath Murthy, Nov 10 2002
The number of binary relations that are both reflexive and symmetric on an n-element set. - Justin Witt (justinmwitt(AT)gmail.com), Jul 12 2005
The number of symmetric binary relations on an (n-1)-element set. - Peter Kagey, Feb 13 2021
To win a game, you must flip n+1 heads in a row, where n is the total number of tails flipped so far. Then the probability of winning for the first time after n tails is A005329 / A006125. The probability of having won before n+1 tails is A114604 / A006125. - Joshua Zucker, Dec 14 2005
a(n) = A126883(n-1)+1. - Zerinvary Lajos, Jun 12 2007
Equals right border of triangle A158474 (unsigned). - Gary W. Adamson, Mar 20 2009
a(n-1) is the number of simple labeled graphs on n nodes such that every node has even degree. - Geoffrey Critzer, Oct 21 2011
a(n+1) is the number of symmetric binary matrices of size n X n. - Nathan J. Russell, Aug 30 2014
Let T_n be the n X n matrix with T_n(i,j) = binomial(2i + j - 3, j-1); then det(T_n) = a(n). - Tony Foster III, Aug 30 2018
k^(n*(n-1)/2) is the determinant of n X n matrix T_(i,j) = binomial(k*i + j - 3, j-1), in this case k=2. - Tony Foster III, May 12 2019
Let B_n be the n+1 X n+1 matrix with B_n(i, j) = Sum_{m=max(0, j-i)..min(j, n-i)} (binomial(i, j-m) * binomial(n-i, m) * (-1)^m), 0<=i,j<=n. Then det B_n = a(n+1). Also, deleting the first row and any column from B_n results in a matrix with determinant a(n). The matrices B_n have the following property: B_n * [x^n, x^(n-1) * y, x^(n-2) * y^2, ..., y^n]^T = [(x-y)^n, (x-y)^(n-1) * (x+y), (x-y)^(n-2) * (x+y)^2, ..., (x+y)^n]^T. - Nicolas Nagel, Jul 02 2019
a(n) is the number of positive definite (-1,1)-matrices of size n X n. - Eric W. Weisstein, Jan 03 2021
a(n) is the number of binary relations on a labeled n-set that are both total and antisymmetric. - José E. Solsona, Feb 05 2023

Examples

			From _Gus Wiseman_, Feb 11 2021: (Start)
This sequence counts labeled graphs on n vertices. For example, the a(0) = 1 through a(2) = 8 graph edge sets are:
  {}  {}  {}    {}
          {12}  {12}
                {13}
                {23}
                {12,13}
                {12,23}
                {13,23}
                {12,13,23}
This sequence also counts labeled graphs with loops on n - 1 vertices. For example, the a(1) = 1 through a(3) = 8 edge sets are the following. A loop is represented as an edge with two equal vertices.
  {}  {}    {}
      {11}  {11}
            {12}
            {22}
            {11,12}
            {11,22}
            {12,22}
            {11,12,22}
(End)
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 547 (Fig. 9.7), 573.
  • G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; p. 178.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 178.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 3, Eq. (1.1.2).
  • J. Propp, Enumeration of matchings: problems and progress, in: New perspectives in geometric combinatorics, L. Billera et al., eds., Mathematical Sciences Research Institute series, vol. 38, Cambridge University Press, 1999.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000568 for the unlabeled analog, A053763, A006253, A004003.
Cf. A001187 (connected labeled graphs).
Cf. A158474. - Gary W. Adamson, Mar 20 2009
Cf. A136652 (log). - Paul D. Hanna, Dec 04 2009
The unlabeled version is A000088, or A002494 without isolated vertices.
The directed version is A002416.
The covering case is A006129.
The version for hypergraphs is A058891, or A016031 without singletons.
Row sums of A143543.
The case of connected edge set is A287689.

Programs

Formula

Sequence is given by the Hankel transform of A001003 (Schroeder's numbers) = 1, 1, 3, 11, 45, 197, 903, ...; example: det([1, 1, 3, 11; 1, 3, 11, 45; 3, 11, 45, 197; 11, 45, 197, 903]) = 2^6 = 64. - Philippe Deléham, Mar 02 2004
a(n) = 2^floor(n^2/2)/2^floor(n/2). - Paul Barry, Oct 04 2004
G.f. satisfies: A(x) = 1 + x*A(2x). - Paul D. Hanna, Dec 04 2009
a(n) = 2 * a(n-1)^2 / a(n-2). - Michael Somos, Dec 30 2012
G.f.: G(0)/x - 1/x, where G(k) = 1 + 2^(k-1)*x/(1 - 1/(1 + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 26 2013
E.g.f. satisfies A'(x) = A(2x). - Geoffrey Critzer, Sep 07 2013
Sum_{n>=1} 1/a(n) = A299998. - Amiram Eldar, Oct 27 2020
a(n) = s_lambda(1,1,...,1) where s is the Schur polynomial in n variables and lambda is the partition (n,n-1,n-2,...,1). - Leonid Bedratyuk, Feb 06 2022
a(n) = Product_{1 <= j <= i <= n-1} (i + j)/(2*i - 2*j + 1). Cf. A007685. - Peter Bala, Oct 25 2024

Extensions

More terms from Vladeta Jovovic, Apr 09 2000

A001835 a(n) = 4*a(n-1) - a(n-2), with a(0) = 1, a(1) = 1.

Original entry on oeis.org

1, 1, 3, 11, 41, 153, 571, 2131, 7953, 29681, 110771, 413403, 1542841, 5757961, 21489003, 80198051, 299303201, 1117014753, 4168755811, 15558008491, 58063278153, 216695104121, 808717138331, 3018173449203, 11263976658481, 42037733184721, 156886956080403, 585510091136891
Offset: 0

Views

Author

Keywords

Comments

See A079935 for another version.
Number of ways of packing a 3 X 2*(n-1) rectangle with dominoes. - David Singmaster.
Equivalently, number of perfect matchings of the P_3 X P_{2(n-1)} lattice graph. - Emeric Deutsch, Dec 28 2004
The terms of this sequence are the positive square roots of the indices of the octagonal numbers (A046184) - Nicholas S. Horne (nairon(AT)loa.com), Dec 13 1999
Terms are the solutions to: 3*x^2 - 2 is a square. - Benoit Cloitre, Apr 07 2002
Gives solutions x > 0 of the equation floor(x*r*floor(x/r)) == floor(x/r*floor(x*r)) where r = 1 + sqrt(3). - Benoit Cloitre, Feb 19 2004
a(n) = L(n-1,4), where L is defined as in A108299; see also A001834 for L(n,-4). - Reinhard Zumkeller, Jun 01 2005
Values x + y, where (x, y) solves for x^2 - 3*y^2 = 1, i.e., a(n) = A001075(n) + A001353(n). - Lekraj Beedassy, Jul 21 2006
Number of 01-avoiding words of length n on alphabet {0,1,2,3} which do not end in 0. (E.g., for n = 2 we have 02, 03, 11, 12, 13, 21, 22, 23, 31, 32, 33.) - Tanya Khovanova, Jan 10 2007
sqrt(3) = 2/2 + 2/3 + 2/(3*11) + 2/(11*41) + 2/(41*153) + 2/(153*571) + ... - Gary W. Adamson, Dec 18 2007
The lower principal convergents to 3^(1/2), beginning with 1/1, 5/3, 19/11, 71/41, comprise a strictly increasing sequence; numerators = A001834, denominators = A001835. - Clark Kimberling, Aug 27 2008
From Gary W. Adamson, Jun 21 2009: (Start)
A001835 and A001353 = bisection of denominators of continued fraction [1, 2, 1, 2, 1, 2, ...]; i.e., bisection of A002530.
a(n) = determinant of an n*n tridiagonal matrix with 1's in the super- and subdiagonals and (3, 4, 4, 4, ...) as the main diagonal.
Also, the product of the eigenvalues of such matrices: a(n) = Product_{k=1..(n-1)/2)} (4 + 2*cos(2*k*Pi/n).
(End)
Let M = a triangle with the even-indexed Fibonacci numbers (1, 3, 8, 21, ...) in every column, and the leftmost column shifted up one row. a(n) starting (1, 3, 11, ...) = lim_{n->oo} M^n, the left-shifted vector considered as a sequence. - Gary W. Adamson, Jul 27 2010
a(n+1) is the number of compositions of n when there are 3 types of 1 and 2 types of other natural numbers. - Milan Janjic, Aug 13 2010
For n >= 2, a(n) equals the permanent of the (2*n-2) X (2*n-2) tridiagonal matrix with sqrt(2)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
Primes in the sequence are apparently those in A096147. - R. J. Mathar, May 09 2013
Except for the first term, positive values of x (or y) satisfying x^2 - 4xy + y^2 + 2 = 0. - Colin Barker, Feb 04 2014
Except for the first term, positive values of x (or y) satisfying x^2 - 14xy + y^2 + 32 = 0. - Colin Barker, Feb 10 2014
The (1,1) element of A^n where A = (1, 1, 1; 1, 2, 1; 1, 1, 2). - David Neil McGrath, Jul 23 2014
Yong Hao Ng has shown that for any n, a(n) is coprime with any member of A001834 and with any member of A001075. - René Gy, Feb 25 2018
a(n+1) is the number of spanning trees of the graph T_n, where T_n is a 2 X n grid with an additional vertex v adjacent to (1,1) and (2,1). - Kevin Long, May 04 2018
a(n)/A001353(n) is the resistance of an n-ladder graph whose edges are replaced by one-ohm resistors. The resistance in ohms is measured at two nodes at one end of the ladder. It approaches sqrt(3) - 1 for n -> oo. See A342568, A357113, and A357115 for related information. - Hugo Pfoertner, Sep 17 2022
a(n) is the number of ways to tile a 1 X (n-1) strip with three types of tiles: small isosceles right triangles (with small side length 1), 1 X 1 squares formed by joining two of those right triangles along the hypotenuse, and large isosceles right triangles (with large side length 2) formed by joining two of those right triangles along a short leg. As an example, here is one of the a(6)=571 ways to tile a 1 X 5 strip with these kinds of tiles:
| / \ |\ /| |
|/_\|\/_||. - Greg Dresden and Arjun Datta, Jun 30 2023
From Klaus Purath, May 11 2024: (Start)
For any two consecutive terms (a(n), a(n+1)) = (x,y): x^2 - 4xy + y^2 = -2 = A028872(-1). In general, the following applies to all sequences (t) satisfying t(i) = 4t(i-1) - t(i-2) with t(0) = 1 and two consecutive terms (x,y): x^2 - 4xy + y^2 = A028872(t(1)-2). This includes and interprets the Feb 04 2014 comments here and on A001075 by Colin Barker and the Dec 12 2012 comment on A001353 by Max Alekseyev. By analogy to this, for three consecutive terms (x,y,z) y^2 - xz = A028872(t(1)-2). This includes and interprets the Jul 10 2021 comment on A001353 by Bernd Mulansky.
If (t) is a sequence satisfying t(k) = 3t(k-1) + 3t(k-2) - t(k-3) or t(k) = 4t(k-1) - t(k-2) without regard to initial values and including this sequence itself, then a(n) = (t(k+2n+1) + t(k))/(t(k+n+1) + t(k+n)) always applies, as long as t(k+n+1) + t(k+n) != 0 for integer k and n >= 1. (End)
Binomial transform of 1, 0, 2, 4, 12, ... (A028860 without the initial -1) and reverse binomial transform of 1, 2, 6, 24, 108, ... (A094433 without the initial 1). - Klaus Purath, Sep 09 2024

References

  • Julio R. Bastida, Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163-166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009).
  • Leonhard Euler, (E388) Vollstaendige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 375.
  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 329.
  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics I, p. 292.

Crossrefs

Row 3 of array A099390.
Essentially the same as A079935.
First differences of A001353.
Partial sums of A052530.
Pairwise sums of A006253.
Bisection of A002530, A005246 and A048788.
First column of array A103997.
Cf. A001519, A003699, A082841, A101265, A125077, A001353, A001542, A096147 (subsequence of primes).

Programs

  • GAP
    a:=[1,1];; for n in [3..20] do a[n]:=4*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
  • Haskell
    a001835 n = a001835_list !! n
    a001835_list =
       1 : 1 : zipWith (-) (map (4 *) $ tail a001835_list) a001835_list
    -- Reinhard Zumkeller, Aug 14 2011
    
  • Magma
    [n le 2 select 1 else 4*Self(n-1)-Self(n-2): n in [1..25]]; // Vincenzo Librandi, Sep 16 2016
    
  • Maple
    f:=n->((3+sqrt(3))^(2*n-1)+(3-sqrt(3))^(2*n-1))/6^n; [seq(simplify(expand(f(n))),n=0..20)]; # N. J. A. Sloane, Nov 10 2009
  • Mathematica
    CoefficientList[Series[(1-3x)/(1-4x+x^2), {x, 0, 24}], x] (* Jean-François Alcover, Jul 25 2011, after g.f. *)
    LinearRecurrence[{4,-1},{1,1},30] (* Harvey P. Dale, Jun 08 2013 *)
    Table[Round@Fibonacci[2n-1, Sqrt[2]], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
    Table[(3*ChebyshevT[n, 2] - ChebyshevU[n, 2])/2, {n, 0, 20}] (* G. C. Greubel, Dec 23 2019 *)
  • PARI
    {a(n) = real( (2 + quadgen(12))^n * (1 - 1 / quadgen(12)) )} /* Michael Somos, Sep 19 2008 */
    
  • PARI
    {a(n) = subst( (polchebyshev(n) + polchebyshev(n-1)) / 3, x, 2)} /* Michael Somos, Sep 19 2008 */
    
  • Sage
    [lucas_number1(n,4,1)-lucas_number1(n-1,4,1) for n in range(25)] # Zerinvary Lajos, Apr 29 2009
    
  • Sage
    [(3*chebyshev_T(n,2) - chebyshev_U(n,2))/2 for n in (0..20)] # G. C. Greubel, Dec 23 2019
    

Formula

G.f.: (1 - 3*x)/(1 - 4*x + x^2). - Simon Plouffe in his 1992 dissertation
a(1-n) = a(n).
a(n) = ((3 + sqrt(3))^(2*n - 1) + (3 - sqrt(3))^(2*n - 1))/6^n. - Dean Hickerson, Dec 01 2002
a(n) = (8 + a(n-1)*a(n-2))/a(n-3). - Michael Somos, Aug 01 2001
a(n+1) = Sum_{k=0..n} 2^k * binomial(n + k, n - k), n >= 0. - Len Smiley, Dec 09 2001
Limit_{n->oo} a(n)/a(n-1) = 2 + sqrt(3). - Gregory V. Richardson, Oct 10 2002
a(n) = 2*A061278(n-1) + 1 for n > 0. - Bruce Corrigan (scentman(AT)myfamily.com), Nov 04 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n - i, i); then q(n, 2) = a(n+1). - Benoit Cloitre, Nov 10 2002
a(n+1) = Sum_{k=0..n} ((-1)^k)*((2*n+1)/(2*n + 1 - k))*binomial(2*n + 1 - k, k)*6^(n - k) (from standard T(n,x)/x, n >= 1, Chebyshev sum formula). The Smiley and Cloitre sum representation is that of the S(2*n, i*sqrt(2))*(-1)^n Chebyshev polynomial. - Wolfdieter Lang, Nov 29 2002
a(n) = S(n-1, 4) - S(n-2, 4) = T(2*n-1, sqrt(3/2))/sqrt(3/2) = S(2*(n-1), i*sqrt(2))*(-1)^(n - 1), with S(n, x) := U(n, x/2), resp. T(n, x), Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120. S(-1, x) = 0, S(-2, x) = -1, S(n, 4) = A001353(n+1), T(-1, x) = x.
a(n+1) = sqrt((A001834(n)^2 + 2)/3), n >= 0 (see Cloitre comment).
Sequence satisfies -2 = f(a(n), a(n+1)) where f(u, v) = u^2 + v^2 - 4*u*v. - Michael Somos, Sep 19 2008
a(n) = (1/6)*(3*(2 - sqrt(3))^n + sqrt(3)*(2 - sqrt(3))^n + 3*(2 + sqrt(3))^n - sqrt(3)*(2 + sqrt(3))^n) (Mathematica's solution to the recurrence relation). - Sarah-Marie Belcastro, Jul 04 2009
If p[1] = 3, p[i] = 2, (i > 1), and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i <= j), A[i,j] = -1, (i = j+1), and A[i,j] = 0 otherwise. Then, for n >= 1, a(n+1) = det A. - Milan Janjic, Apr 29 2010
a(n) = (a(n-1)^2 + 2)/a(n-2). - Irene Sermon, Oct 28 2013
a(n) = A001353(n+1) - 3*A001353(n). - R. J. Mathar, Oct 30 2015
a(n) = a(n-1) + 2*A001353(n-1). - Kevin Long, May 04 2018
From Franck Maminirina Ramaharo, Nov 11 2018: (Start)
a(n) = (-1)^n*(A125905(n) + 3*A125905(n-1)), n > 0.
E.g.f.: exp^(2*x)*(3*cosh(sqrt(3)*x) - sqrt(3)*sinh(sqrt(3)*x))/3. (End)
From Peter Bala, Feb 12 2024: (Start)
For n in Z, a(n) = A001353(n) + A001353(1-n).
For n, j, k in Z, a(n)*a(n+j+k) - a(n+j)*a(n+k) = 2*A001353(j)*A001353(k). The case j = 1, k = 2 is given above. (End)

A004003 Number of domino tilings (or dimer coverings) of a 2n X 2n square.

Original entry on oeis.org

1, 2, 36, 6728, 12988816, 258584046368, 53060477521960000, 112202208776036178000000, 2444888770250892795802079170816, 548943583215388338077567813208427340288, 1269984011256235834242602753102293934298576249856
Offset: 0

Views

Author

Keywords

Comments

A099390 is the main entry for domino tilings (or dimer tilings) of a rectangle.
The numbers of domino tilings in A006253, A004003, A006125 give the number of perfect matchings in the relevant graphs. There are results of Jockusch and Ciucu that if a planar graph has a rotational symmetry then the number of perfect matchings is a square or twice a square - this applies to these 3 sequences. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 12 2001
Christine Bessenrodt points out that Pachter (1997) shows that a(n) is divisible by 2^n (cf. A065072).
a(n) is the number of different ways to cover a 2n X 2n lattice with 2n^2 dominoes. John and Sachs show that a(n) = 2^n*B(n)^2, where B(n) == n+1 (mod 32) when n is even and B(n) == (-1)^((n-1)/2)*n (mod 32) when n is odd. - Yong Kong (ykong(AT)curagen.com), May 07 2000

Examples

			The 36 solutions for the 4 X 4 board, from Neven Juric, May 14 2008:
A01 = {(1,2), (3,4), (5,6), (7,8), (9,10), (11,12), (13,14), (15,16)}
A02 = {(1,2), (3,4), (5,6), (7,11), (9,10), (8,12), (13,14), (15,16)}
A03 = {(1,2), (3,4), (5,9), (6,7), (10,11), (8,12), (13,14), (15,16)}
A04 = {(1,2), (3,4), (5,9), (6,10), (7,8), (11,12), (13,14), (15,16)}
A05 = {(1,2), (3,4), (5,9), (6,10), (7,11), (8,12), (13,14), (15,16)}
A06 = {(1,2), (3,4), (5,6), (7,8), (9,10), (13,14), (11,15), (12,16)}
A07 = {(1,2), (3,4), (5,9), (6,10), (7,8), (11,15), (13,14), (12,16)}
A08 = {(1,2), (3,4), (5,6), (7,8), (9,13), (10,14), (11,12), (15,16)}
A09 = {(1,2), (3,4), (5,6), (7,11), (8,12), (9,13), (10,14), (15,16)}
A10 = {(1,2), (3,4), (5,6), (7,8), (9,13), (10,11), (14,15), (12,16)}
A11 = {(1,2), (3,4), (5,6), (7,8), (9,13), (10,14), (11,15), (12,16)}
A12 = {(1,2), (5,6), (3,7), (4,8), (9,10), (11,12), (13,14), (15,16)}
A13 = {(1,2), (3,7), (4,8), (5,9), (6,10), (11,12), (13,14), (15,16)}
A14 = {(1,2), (5,6), (3,7), (4,8), (9,10), (13,14), (11,15), (12,16)}
A15 = {(1,2), (3,7), (4,8), (6,10), (5,9), (11,15), (12,16), (13,14)}
A16 = {(1,2), (3,7), (4,8), (5,6), (9,13), (10,14), (11,12), (15,16)}
A17 = {(1,2), (3,7), (4,8), (5,6), (9,13), (10,11), (14,15), (12,16)}
A18 = {(1,2), (5,6), (3,7), (4,8), (9,13), (10,14), (11,15), (12,16)}
A19 = {(1,5), (2,6), (3,4), (7,8), (9,10), (11,12), (13,14), (15,16)}
A20 = {(1,5), (2,6), (3,4), (7,11), (8,12), (9,10), (13,14), (15,16)}
A21 = {(1,5), (3,4), (2,6), (9,10), (7,8), (11,15), (13,14), (12,16)}
A22 = {(1,5), (2,6), (3,4), (7,8), (9,13), (10,14), (11,12), (15,16)}
A23 = {(1,5), (2,6), (3,4), (7,11), (8,12), (9,13), (10,14), (15,16)}
A24 = {(1,5), (2,6), (3,4), (7,8), (9,13), (10,11), (14,15), (12,16)}
A25 = {(1,5), (2,6), (3,4), (7,8), (9,13), (10,14), (11,15), (12,16)}
A26 = {(1,5), (2,3), (6,7), (4,8), (9,10), (11,12), (13,14), (15,16)}
A27 = {(1,5), (2,6), (3,7), (4,8), (9,10), (11,12), (13,14), (15,16)}
A28 = {(1,5), (2,3), (6,7), (4,8), (9,10), (11,15), (13,14), (12,16)}
A29 = {(1,5), (2,6), (3,7), (4,8), (9,10), (13,14), (11,15), (12,16)}
A30 = {(1,5), (2,3), (6,7), (4,8), (9,13), (10,14), (11,12), (15,16)}
A31 = {(1,5), (2,6), (3,7), (4,8), (9,13), (10,14), (11,12), (15,16)}
A32 = {(1,5), (2,6), (3,7), (4,8), (9,13), (10,14), (11,15), (12,16)}
A33 = {(1,5), (2,6), (3,7), (4,8), (9,13), (10,11), (14,15), (12,16)}
A34 = {(1,5), (2,3), (4,8), (6,10), (7,11), (9,13), (14,15), (12,16)}
A35 = {(1,5), (2,3), (6,7), (4,8), (9,13), (10,14), (11,15), (12,16)}
A36 = {(1,5), (2,3), (6,7), (4,8), (9,13), (10,11), (14,15), (12,16)}
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 569.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 406-412.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Darko Veljan, Kombinatorika s teorijom grafova (Croatian) (Combinatorics with Graph Theory) mentions the value 12988816 = 2^4*901^2 for the 8 X 8 case on page 4.

Crossrefs

Main diagonal of array A099390 or A187596.

Programs

  • Maple
    f := n->2^(2*n^2)*product(product(cos(i*Pi/(2*n+1))^2+cos(j*Pi/(2*n+1))^2,j=1..n),i=1..n); for k from 0 to 12 do round(evalf(f(k),300)) od;
  • Mathematica
    a[n_] := Round[ N[ Product[ 2*Cos[(2i*Pi)/(2n+1)] + 2*Cos[(2j*Pi)/(2n+1)] + 4,  {i, 1, n}, {j, 1, n}], 300] ]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Jan 04 2012, after Maple *)
    Table[Sqrt[Resultant[ChebyshevU[2*n, x/2], ChebyshevU[2*n, I*x/2], x]], {n, 0, 12}] (* Vaclav Kotesovec, Dec 30 2020 *)
  • PARI
    {a(n) = sqrtint(polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(2*n, 2, I*x/2)))} \\ Seiichi Manyama, Apr 13 2020
    
  • Python
    from math import isqrt
    from sympy.abc import x
    from sympy import I, resultant, chebyshevu
    def A004003(n): return isqrt(resultant(chebyshevu(n<<1,x/2),chebyshevu(n<<1,I*x/2))) if n else 1 # Chai Wah Wu, Nov 07 2023

Formula

a(n) = A099390(2n,2n).
a(n) = Product_{j=1..n} Product_{k=1..n} (4*cos(j*Pi/(2*n+1))^2 + 4*cos(k*Pi/(2*n+1))^2). - N. J. A. Sloane, Mar 16 2015
a(n) = 2^n * A065072(n)^2. - Alois P. Heinz, Nov 22 2018
a(n)^2 = Resultant(U(2*n,x/2), U(2*n,i*x/2)), where U(n,x) is a Chebyshev polynomial of the second kind and i = sqrt(-1). - Seiichi Manyama, Apr 13 2020
a(n) ~ 2 * (sqrt(2)-1)^(2*n+1) * exp(G*(2*n+1)^2/Pi), where G is Catalan's constant A006752. - Vaclav Kotesovec, Dec 30 2020

Extensions

Corrected and extended by David Radcliffe

A189650 T(n,k) = Number of n X k array permutations with each element moving zero or one space horizontally, diagonally or antidiagonally.

Original entry on oeis.org

1, 2, 1, 3, 9, 1, 5, 33, 32, 1, 8, 185, 263, 121, 1, 13, 913, 4277, 2161, 450, 1, 21, 4777, 55440, 107080, 17655, 1681, 1, 34, 24577, 799069, 3774889, 2631821, 144353, 6272, 1, 55, 127385, 11047585, 157346785, 250758892, 64890337, 1180167, 23409, 1, 89
Offset: 1

Views

Author

R. H. Hardin, Apr 24 2011

Keywords

Comments

Table starts
.1......2.........3..............5..................8.....................13
.1......9........33............185................913...................4777
.1.....32.......263...........4277..............55440.................799069
.1....121......2161.........107080............3774889..............157346785
.1....450.....17655........2631821..........250758892............30010432933
.1...1681....144353.......64890337........16718653553..........5760755884032
.1...6272...1180167.....1598901325......1113666564608.......1104421532180261
.1..23409...9648721....39401919001.....74192202677913.....211788908613601649
.1..87362..78885143...970964720320...4942510226322656...40611524427488470629
.1.326041.644942273.23927183356745.329259659094878233.7787535228500656118433

Examples

			Some solutions for 5X3
..0..2..1....0..1..2....1..0..4....0..3..2....0..1..2....4..0..2....0..5..2
..3..4..5....4..3..5....3..2..5....1..5..4....3..4..5....1..6..5....1..3..4
..6.11..8....6..8..7....6..8..7....7..6..8....7..6..8....7..3..8....6..9..8
..7..9.10....9.14.13....9.12.11....9.10.11...10.14.11....9.14.13....7.10.13
.12.14.13...12.11.10...10.14.13...12.14.13...12..9.13...12.11.10...12.11.14
		

Crossrefs

Column 2 is A006253.
Row 1 is A000045(n+1).
Row 2 is A189179.

A359884 Number of 3-dimensional tilings of a 2 X 2 X n box using 2 X 2 X 1 plates and 1 X 2 X 1 dominos.

Original entry on oeis.org

1, 3, 24, 133, 839, 5056, 30969, 188603, 1150952, 7018621, 42811231, 261110416, 1592592465, 9713598835, 59245780536, 361354997685, 2203996629559, 13442737199456, 81990685695721, 500082110459883, 3050128402768520, 18603511408241453, 113467563119685583
Offset: 0

Views

Author

Gerhard Kirchner, Jan 20 2023

Keywords

Comments

The first recurrence is derived in "3d-tilings of a 2 X 2 X n box" as a special case of a more general tiling problem: III, example 4.

Examples

			a(1) = 3
      _______         _______          _______
    /       /|      /   /   /|       /______ /|
   /______ / |     /__ /__ / |      /______ /||
   |       | /     |   |   | /      |       ||/
   |_______|/      |___|___|/       |_______|/
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5, 9, -14}, {1, 3, 24}, 25] (* Paolo Xausa, Jun 24 2024 *)
  • Maxima
    /* See link "Maxima code". */

Formula

G.f.: (1 - 2*x) / (1 - 5*x - 9*x^2 + 14*x^3).
a(n) = 3*a(n-1) + c(n-1) + 7*a(n-2) where c(n) = 8*a(n-1) + 2*c(n-1) with a(n),c(n) <= 0 for n <= 0 except for a(0)=1.
a(n) = 5*a(n-1) + 9*a(n-2) - 14*a(n-3) for n >= 3.

A181206 T(n,k) = number of n X k matrices containing a permutation of 1..n*k moving each element at most to a neighboring position.

Original entry on oeis.org

1, 2, 2, 3, 9, 3, 5, 32, 32, 5, 8, 121, 229, 121, 8, 13, 450, 1845, 1845, 450, 13, 21, 1681, 14320, 32000, 14320, 1681, 21, 34, 6272, 112485, 535229, 535229, 112485, 6272, 34, 55, 23409, 880163, 9049169, 19114420, 9049169, 880163, 23409, 55, 89, 87362
Offset: 1

Views

Author

R. H. Hardin, Oct 10 2010

Keywords

Comments

Also, the number of perfect matchings in the graph P_2 X P_k X P_n. - Andrew Howroyd, May 17 2017

Examples

			Table starts:
..1......2.........3............5................8..................13
..2......9........32..........121..............450................1681
..3.....32.......229.........1845............14320..............112485
..5....121......1845........32000...........535229.............9049169
..8....450.....14320.......535229.........19114420...........692276437
.13...1681....112485......9049169........692276437.........53786626921
.21...6272....880163....152526845......24972353440.......4161756233501
.34..23409...6895792...2573281769.....901990734650.....322462050747008
.55..87362..54003765..43402320448...32567565264292...24976513162427653
.89.326041.422983905.732106008249.1176040842289105.1934824269280528177
...
All solutions for 3X2
..1..2....1..2....1..2....1..2....1..2....1..2....1..2....1..2....1..2....1..4
..3..4....4..3....4..3....4..6....3..4....3..6....5..4....5..3....5..6....3..2
..5..6....5..6....6..5....3..5....6..5....5..4....3..6....6..4....3..4....5..6
...
..1..4....1..4....2..1....2..1....2..1....2..1....2..1....2..1....2..1....2..1
..3..2....5..2....4..3....4..3....4..6....3..4....3..4....3..6....5..4....5..3
..6..5....3..6....5..6....6..5....3..5....5..6....6..5....5..4....3..6....6..4
...
..2..1....2..4....2..4....2..4....3..1....3..1....3..1....3..2....3..2....3..2
..5..6....1..3....1..3....1..6....4..2....4..2....5..2....1..4....1..4....1..6
..3..4....5..6....6..5....3..5....5..6....6..5....6..4....5..6....6..5....5..4
...
..3..4....3..4
..1..2....1..2
..5..6....6..5
		

Crossrefs

Main diagonal gives A181205.

A046184 Indices of octagonal numbers which are also squares.

Original entry on oeis.org

1, 9, 121, 1681, 23409, 326041, 4541161, 63250209, 880961761, 12270214441, 170902040409, 2380358351281, 33154114877521, 461777249934009, 6431727384198601, 89582406128846401, 1247721958419651009, 17378525011746267721, 242051628206028097081
Offset: 1

Views

Author

Keywords

Comments

The equation a(t)*(3*a(t)-2) = m*m is equivalent to the Pell equation (3*a(t)-1)*(3*a(t)-1) - 3*m*m = 1. - Paul Weisenhorn, May 12 2009
As n increases, this sequence is approximately geometric with common ratio r = lim_{n -> infinity} a(n)/a(n-1) = (2 + sqrt(3))^2 = 7 + 4 * sqrt(3). - Ant King, Nov 16 2011
Also numbers n such that the octagonal number N(n) is equal to the sum of two consecutive triangular numbers. - Colin Barker, Dec 11 2014
Also nonnegative integers y in the solutions to 2*x^2 - 6*y^2 + 4*x + 4*y + 2 + 2 = 0, the corresponding values of x being A251963. - Colin Barker, Dec 11 2014

Crossrefs

Programs

  • Magma
    I:=[1, 9, 121]; [n le 3 select I[n] else 15*Self(n-1)-15*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Nov 17 2011
    
  • Mathematica
    LinearRecurrence[ {15, -15, 1}, {1, 9, 121}, 17 ] (* Ant King, Nov 16 2011 *)
    CoefficientList[Series[x (1-6x+x^2)/((1-x)(1-14x+x^2)),{x,0,30}],x] (* Harvey P. Dale, Sep 01 2021 *)
  • PARI
    Vec(x*(1-6*x+x^2) / ((1-x)*(1-14*x+x^2)) + O(x^100)) \\ Colin Barker, Dec 11 2014

Formula

{n: A000567(n) in A000290}.
Nearest integer to (1/6) * (2+sqrt(3))^(2n-1). - Ralf Stephan, Feb 24 2004
a(n) = A045899(n-1) + 1 = A051047(n+1) + 1 = A003697(2n-2). - N. J. A. Sloane, Jun 12 2004
a(n) = A001835(n)^2. - Lekraj Beedassy, Jul 21 2006
From Paul Weisenhorn, May 12 2009: (Start)
With A=(2+sqrt(3))^2=7+4*sqrt(3) the equation x*x-3*m*m=1 has solutions
x(t) + sqrt(3)*m(t) = (2+sqrt(3))*A^t and the recurrences
x(t+2) = 14*x(t+1) - x(t) with = 2, 26, 362, 5042
m(t+2) = 14*m(t+1) - m(t) with = 1, 15, 209, 2911
a(t+2) = 14*a(t+1) - a(t) - 4 with = 1, 9, 121, as above. (End)
From Ant King, Nov 15 2011: (Start)
a(n) = 14*a(n-1) - a(n-2) - 4.
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3).
a(n) = (1/6)*( (2+sqrt(3))^(2n-1) + (2-sqrt(3))^(2n-1) + 2 ).
a(n) = ceiling( (1/6)*(2 + sqrt(3))^(2n-1) ).
a(n) = (1/6)*( (tan(5*Pi/12))^(2n-1) + (tan(Pi/12))^(2n-1) + 2 ).
a(n) = ceiling ( (1/6)*(tan(5*Pi/12))^(2n-1) ).
G.f.: x*(1-6*x+x^2) / ((1-x)*(1-14*x+x^2)). (End)
a(n) = A006253(2n-2). - Andrey Goder, Oct 17 2021

A335559 a(n) = 3*a(n-1) + 4*a(n-2) - 2*a(n-3) with a(0)=0, a(1)=1, a(2)=2.

Original entry on oeis.org

0, 1, 2, 10, 36, 144, 556, 2172, 8452, 32932, 128260, 499604, 1945988, 7579860, 29524324, 115000436, 447938884, 1744769748, 6796063908, 26471392948, 103108894980, 401620128916, 1564353180772, 6093322268020, 23734139269316, 92447000518484, 360090914096676
Offset: 0

Views

Author

Qianyu Guo, Jun 14 2020

Keywords

Comments

For n > 0, a(n) is the number of ways to tile a 2 X 2 X (n-1) box with 1 X 1 X 1 cubes and 1 X 2 X 2 plates.

Examples

			Here are four of the a(4) = 36 possible tilings of a 2 x 2 x 3 box with cubes and plates:
. ______     ______     ______     _______
./ / / /|   / /___/|   /___/ /|   / /    /|
/_/_/_/ |  /_/___/||  /___/_/ |  /_/___ //|
| | | | /  | |   ||/  |   | | /  | |___|//
|_|_|_|/   |_|___|/   |_ _|_|/   |_|___|/
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, 4, -2}, {0, 1, 2}, 30] (* Greg Dresden, Jun 14 2020 *)
  • PARI
    Vec((1 - x) / (1 - 3*x - 4*x^2 + 2*x^3) + O(x^30)) \\ Colin Barker, Jun 14 2020

Formula

G.f.: (1 - x) / (1 - 3*x - 4*x^2 + 2*x^3). - Colin Barker, Jun 14 2020

Extensions

More terms from Colin Barker, Jun 14 2020

A359885 Number of 3-dimensional tilings of a 2 X 2 X 3n box using trominos (three 1 X 1 X 1 cubes).

Original entry on oeis.org

1, 44, 2512, 145088, 8383744, 484453376, 27994083328, 1617634967552, 93474855387136, 5401434047381504, 312121261353336832, 18035892123135377408, 1042202005934895529984, 60223526164332403490816, 3480009713100277581611008, 201091971436982107249836032
Offset: 0

Views

Author

Gerhard Kirchner, Jan 20 2023

Keywords

Comments

The first recurrence is derived in A359884, "3d-tilings of a 2 X 2 X n box" as a special case of a more general tiling problem: III, example 5.
The example uses two cross section profiles with two overstanding cubes: C (with a common square) and D (with one common edge).

Examples

			a(1)=44.
t1,t2,t3 is a tromino standing on 1,2,3 cubes respectively.
1) Two t2-tiles generate a C-profile or a D-profile in 4 ways each.
   C,D-profile: 4,2 rotation images, D-profile: 2 ways for each image.
    C-profile                      D-profiles
.     ___                      ___                   ___
.   /__ /|               ___ /__ /|            ___ /__ /|
. /__ /| |___          /__ /|   | |          /__ /|   | |
.|   | |/__ /|        |   | |___| |         |   | |___| |
.|   |/__ /| |        |   |/__ /| |         |   |/__ /  |
.|       | |/         |       | |/          |   |   |  /
.|_______|/           |_______|/            |___|___|/
2) t1+t3 generates a C-profile in 4*2=8 ways.
.     ___
.   /   /|                       ______
. /__ /  |    _______          /_____ /|    _______
.|   |  /   /__     /|        |      | |  /__     /|
.|   | |   |  /__ /  |   or   |    __|/  |  /__ /  |
.|   | |   |_|   |  /         |   | |    |_|   |  /
.|___|/      |___|/           |___|/       |___|/
1,2) There are 12 ways to generate a C-profile. The connection of two C-profiles is a 2 X 2 X 3 cuboid. Starting with a C-profile, there are 4*3*3=36 ways to generate this cuboid.
3) There are 4*2=8 ways to generate the cuboid by starting with a D-profile. Therefore, a(1)=36+8=44.
.     ___
.   /   /|          ___       ___
. /__ /  |    ___ /__ /|    /   /|
.|   |   |  /__ /|   | |  /__ /  |
.|___|/| | |   | |___| | |   |  /
.  |___|/  |   |/__ /| | |   | |    or
.          |       | |/  |   | |
.          |_______|/    |___|/
.   _______
. /______ /|          ___
.|       | |    ___ /__ /|    _______
.|    ___|/   /__ /|   | |  /______ /|
.|   | |     |   | |___| | |       | |
.|___|/      |   |/__ /| | |___    | |
.            |       | |/      |   | |
.            |_______|/        |___|/
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{60, -128}, {1, 44}, 20] (* Paolo Xausa, Jun 24 2024 *)
  • Maxima
    /* See A359884. */

Formula

G.f.: (1 - 16*x) / (1 - 60*x + 128*x^2).
a(n) = 44*a(n-1) + 6*e(n-1) where e(n) = 96*a(n-1) + 16*e(n-1) with a(n),e(n) <= 0 for n < =0 except for a(0)=1.
a(n) = 60*a(n-1) - 128*a(n-2) for n >= 2.
E.g.f.: exp(30*x)*cosh(2*sqrt(193)*x) + 7*exp(30*x)*sinh(2*sqrt(193)*x)/sqrt(193). - Stefano Spezia, Jan 21 2023
Showing 1-10 of 31 results. Next