cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A214999 Power floor sequence of sqrt(5).

Original entry on oeis.org

2, 4, 8, 17, 38, 84, 187, 418, 934, 2088, 4668, 10437, 23337, 52183, 116684, 260913, 583419, 1304564, 2917093, 6522818, 14585464, 32614088, 72927317, 163070438, 364636584, 815352188, 1823182917, 4076760937, 9115914583
Offset: 0

Views

Author

Clark Kimberling, Nov 10 2012

Keywords

Comments

See A214992 for a discussion of power floor sequence and the power floor function, p1(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = sqrt(5), and the limit p1(r) = 1.4935514451954997630823098687087959696356...

Examples

			a(0) = [r] = 2, where r = sqrt(5); a(1) = [2*r] = 4; a(2) = [4*r] = 8.
		

Crossrefs

Programs

  • Mathematica
    x = Sqrt[5]; z = 30; (* z = # terms in sequences *)
    f[x_] := Floor[x]; c[x_] := Ceiling[x];
    p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
    p1[n_] := f[x*p1[n - 1]]
    p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
    p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
    p4[n_] := c[x*p4[n - 1]]
    Table[p1[n], {n, 0, z}]  (* A214999 *)
    Table[p2[n], {n, 0, z}]  (* A215091 *)
    Table[p3[n], {n, 0, z}]  (* A218982 *)
    Table[p4[n], {n, 0, z}]  (* A218983 *)

Formula

a(n) = [x*a(n-1)], where x=sqrt(5), a(0) = [x].

A215091 Power floor-ceiling sequence of sqrt(5).

Original entry on oeis.org

2, 5, 11, 25, 55, 123, 275, 615, 1375, 3075, 6875, 15373, 34375, 76865, 171875, 384325, 859376, 1921624, 4296881, 9608119, 21484407, 48040595, 107422036, 240202975, 537110180, 1201014874, 2685550900, 6005074370, 13427754501
Offset: 0

Views

Author

Clark Kimberling, Nov 10 2012

Keywords

Comments

See A214992 for a discussion of power floor-ceiling sequence and the power floor-ceiling function, p2(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = sqrt(5), and the limit p2(r) = 2.20000329748317471983660768168522753590...

Examples

			a(0) = floor(r) = 2, where r = sqrt(5);
a(1) = ceiling(2*r) = 5; a(2) = floor(5*r) = 11.
		

Crossrefs

Programs

  • Mathematica
    (See A214999.)
    nxt[{n_,a_}]:={n+1,If[OddQ[n],Floor[Sqrt[5]*a],Ceiling[Sqrt[5]*a]]}; Transpose[ NestList[nxt,{0,2},30]][[2]] (* Harvey P. Dale, Oct 27 2015 *)

Formula

a(n) = ceiling(x*a(n-1)) if n is odd, a(n) = floor(x*a(n-1)) if n is even, where x = sqrt(5) and a(0) = floor(x).

A218982 Power ceiling-floor sequence of sqrt(5).

Original entry on oeis.org

3, 6, 14, 31, 70, 156, 349, 780, 1745, 3901, 8723, 19505, 43615, 97526, 218075, 487630, 1090374, 2438150, 5451870, 12190751, 27259348, 60953755, 136296740, 304768775, 681483699, 1523843876, 3407418494, 7619219380, 17037092470
Offset: 0

Views

Author

Clark Kimberling, Nov 10 2012

Keywords

Comments

See A214992 for a discussion of power ceiling-floor sequence and power ceiling-floor function, p3(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = sqrt(5), and the limit p3(r) = 2.79135723025040661923369247589566824549062...

Examples

			a(0) = ceiling(r) = 3, where r = sqrt(5);
a(1) = floor(3*r) = 6; a(2) = ceiling(6*r) = 14.
		

Crossrefs

Programs

Formula

a(n) = floor(x*a(n-1)) if n is odd, a(n) = ceiling(x*a(n-1)) if n is even, where x=sqrt(5) and a(0) = ceiling(x).

A218983 Power ceiling sequence of sqrt(5).

Original entry on oeis.org

3, 7, 16, 36, 81, 182, 407, 911, 2038, 4558, 10192, 22791, 50963, 113957, 254816, 569786, 1274081, 2848932, 6370406, 14244661, 31852031, 71223307, 159260157, 356116538, 796300787, 1780582691, 3981503937, 8902913456
Offset: 0

Views

Author

Clark Kimberling, Nov 10 2012

Keywords

Comments

See A214992 for a discussion of power ceiling sequence and the power ceiling function, p4(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = sqrt(5), and the limit p4(r) = 3.2616480254413398807499379112702935254866963...
See A214999 for the power floor function, p1(x). For comparison of p4 and p1, limit(p4(r)/p1(r)) = 2.183820340393031136325385184014007307594650...

Examples

			a(0) = ceiling(r) = 3, where r = sqrt(5);
a(1) = ceiling(3*r) = 7; a(2) = ceiling(7*r ) = 16.
		

Crossrefs

Programs

  • Mathematica
    (See A214999.)
    With[{c=Sqrt[5]},NestList[Ceiling[c #]&,Ceiling[c],30]] (* Harvey P. Dale, Mar 06 2013 *)

Formula

a(n) = ceiling(x*a(n-1)), where x=sqrt(5), a(0) = ceiling(x).

A214993 Power floor sequence of (golden ratio)^5.

Original entry on oeis.org

11, 121, 1341, 14871, 164921, 1829001, 20283931, 224952241, 2494758581, 27667296631, 306835021521, 3402852533361, 37738212888491, 418523194306761, 4641493350262861, 51474950047198231, 570865943869443401, 6331000332611075641, 70211869602591275451
Offset: 0

Views

Author

Clark Kimberling, Nov 09 2012

Keywords

Comments

See A214992 for a discussion of power floor sequence and also the power floor function, p1(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = (golden ratio)^5, and the limit p1(r) = (3/22)*(3+2*sqrt(5)).

Examples

			a(0) = [r] = [11.0902] = 11, where r = (1+sqrt(5))^5.
a(1) = [11*r] = 121; a(2) = [121*r] = 1341.
		

Crossrefs

Programs

  • Magma
    I:=[11,121,1341]; [n le 3 select I[n] else 12*Self(n-1)-10*Self(n-2)-Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 01 2018
  • Mathematica
    x = GoldenRatio^5; z = 30; (* z = # terms in sequences *)
    z1 = 100; (* z1 = # digits in approximations *)
    f[x_] := Floor[x]; c[x_] := Ceiling[x];
    p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
    p1[n_] := f[x*p1[n - 1]]
    p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
    p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
    p4[n_] := c[x*p4[n - 1]]
    Table[p1[n], {n, 0, z}]  (* A214993 *)
    Table[p2[n], {n, 0, z}]  (* A049666 *)
    Table[p3[n], {n, 0, z}]  (* A015457 *)
    Table[p4[n], {n, 0, z}]  (* A214994 *)
    LinearRecurrence[{12,-10,-1}, {11,121,1341}, 30] (* G. C. Greubel, Feb 01 2018 *)
  • PARI
    Vec((11 - 11*x - x^2) / ((1 - x)*(1 - 11*x - x^2)) + O(x^20)) \\ Colin Barker, Nov 13 2017
    

Formula

a(n) = [x*a(n-1)], where x=((1+sqrt(5))/2)^5, a(0) = [x].
a(n) = 1 (mod 10).
a(n) = 12*a(n-1) - 10*a(n-2) - a(n-3).
G.f.: (11 - 11*x - x^2)/(1 - 12*x + 10*x^2 + x^3).
a(n) = (1/55)*(5 + (300-134*sqrt(5))*((11-5*sqrt(5))/2)^n + 2*(11/2+(5*sqrt(5))/2)^n*(150+67*sqrt(5))). - Colin Barker, Nov 13 2017

A214996 Power floor-ceiling sequence of 2+sqrt(2).

Original entry on oeis.org

3, 11, 37, 127, 433, 1479, 5049, 17239, 58857, 200951, 686089, 2342455, 7997641, 27305655, 93227337, 318298039, 1086737481, 3710353847, 12667940425, 43251054007, 147668335177, 504171232695, 1721348260425, 5877050576311, 20065505784393, 68507921984951
Offset: 0

Views

Author

Clark Kimberling, Nov 10 2012

Keywords

Comments

See A214992 for a discussion of power floor-ceiling sequence and power floor-ceiling function, p2(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = 2+sqrt(2), and the limit p2(r) = (11 + 8*sqrt(2))/7.
From Greg Dresden, Jun 02 2020: (Start)
a(n) is the number of ways to tile a 2 X (n+1) strip, with one extra square at the top left corner, using 1 X 1 squares, 2 X 2 squares, and 1 X 2 dominoes (either horizontal or vertical). This picture shows a(1) = 11.
|| || | | ||_ || || || | | | | || ||
||| | | ||| | || || | |_| ||| ||| || | |__| | | |
||| |_| ||| ||| ||| ||| |_| |_| ||| |_| |||
(End)

Examples

			a(0) = floor(r) = 3, where r = 2+sqrt(2).
a(1) = ceiling(3*r) = 11; a(2) = floor(11*r) = 37.
		

Crossrefs

Programs

  • Magma
    Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((3+2*x-2*x^2)/(1-3*x-2*x^2+2*x^3))) // G. C. Greubel, Feb 02 2018
  • Mathematica
    x = 2 + Sqrt[2]; z = 30; (* z = # terms in sequences *)
    z1 = 100; (* z1 = # digits in approximations *)
    f[x_] := Floor[x]; c[x_] := Ceiling[x];
    p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
    p1[n_] := f[x*p1[n - 1]]
    p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
    p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
    p4[n_] := c[x*p4[n - 1]]
    Table[p1[n], {n, 0, z}]  (* A007052 *)
    Table[p2[n], {n, 0, z}]  (* A214996 *)
    Table[p3[n], {n, 0, z}]  (* A214997 *)
    Table[p4[n], {n, 0, z}]  (* A007070 *)
  • PARI
    Vec((3 + 2*x - 2*x^2) / ((1 + x)*(1 - 4*x + 2*x^2)) + O(x^40)) \\ Colin Barker, Nov 13 2017
    

Formula

a(n) = ceiling(x*a(n-1)) if n is odd, a(n) = floor(x*a(n-1)) if n is even, where x = 2+sqrt(2) and a(0) = floor(x).
a(n) = 3*a(n-1) + 2*a(n-2) - 2*a(n-3).
G.f.: (3 + 2*x - 2*x^2)/(1 - 3*x - 2*x^2 + 2*x^3).
a(n) = (1/7)*((-1)^(1+n) + (11-8*sqrt(2))*(2-sqrt(2))^n + (2+sqrt(2))^n*(11+8*sqrt(2))). - Colin Barker, Nov 13 2017

A214997 Power ceiling-floor sequence of 2+sqrt(2).

Original entry on oeis.org

4, 13, 45, 153, 523, 1785, 6095, 20809, 71047, 242569, 828183, 2827593, 9654007, 32960841, 112535351, 384219721, 1311808183, 4478793289, 15291556791, 52208640585, 178251448759, 608588513865, 2077851157943, 7094227604041, 24221208100279, 82696377193033
Offset: 0

Views

Author

Clark Kimberling, Nov 10 2012

Keywords

Comments

See A214992 for a discussion of power ceiling-floor sequence and power ceiling-floor function, p3(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = 2+sqrt(2), and the limit p3(r) = 3.8478612632206289...
a(n) is the number of words over {0,1,2,3} of length n+1 that avoid 23, 32, and 33. As an example, a(2)=45 corresponds to the 45 such words of length 3; these are all 64 words except for the 19 prohibited cases which are 320, 321, 322, 323, 230, 231, 232, 233, 330, 331, 332, 333, 023, 123, 223, 032, 132, 033, 133. - Greg Dresden and Mina BH Arsanious, Aug 09 2023
Let M denote the 4 X 4 matrix = [[1,1,1,1], [1,1,1,1], [1,1,1,0], [1,1,0,0]] and A(n) = the column vector (p(n),q(n),r(n),s(n)) = M^n * A(0), where A(0) = (1,1,1,1), then a(n) = p(n)+q(n)+r(n)+s(n) = p(n+1). - Mina BH Arsanious, Jan 18 2025
Sum_{k=0..n} a(k) = (r(n-2)-3)/2 where r(n) is defined in previous comment. - Mina BH Arsanious, May 21 2025

Examples

			a(0) = ceiling(r) = 4, where r = 2+sqrt(2);
a(1) = floor(4*r) = 13; a(2) = ceiling(13*r) = 45.
		

Crossrefs

Programs

  • Magma
    Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((4 +x-2*x^2)/(1-3*x-2*x^2+2*x^3))); // G. C. Greubel, Feb 01 2018
  • Mathematica
    (See A214996.)
    CoefficientList[Series[(4+x-2*x^2)/(1-3*x-2*x^2+2*x^3), {x,0,50}], x] (* G. C. Greubel, Feb 01 2018 *)
  • PARI
    Vec((4 + x - 2*x^2) / ((1 + x)*(1 - 4*x + 2*x^2)) + O(x^40)) \\ Colin Barker, Nov 13 2017
    

Formula

a(n) = floor(x*a(n-1)) if n is odd, a(n) = ceiling(x*a(n-1)) if n is even, where x = 2+sqrt(2) and a(0) = ceiling(x).
a(n) = 3*a(n-1) + 2*a(n-2) - 2*a(n-3).
G.f.: (4 + x - 2*x^2)/(1 - 3*x - 2*x^2 + 2*x^3).
a(n) = (1/14)*(2*(-1)^n + (27-19*sqrt(2))*(2-sqrt(2))^n + (2+sqrt(2))^n*(27+19*sqrt(2))). - Colin Barker, Nov 13 2017

A218988 Power floor sequence of 2+sqrt(8).

Original entry on oeis.org

4, 19, 91, 439, 2119, 10231, 49399, 238519, 1151671, 5560759, 26849719, 129641911, 625966519, 3022433719, 14593600951, 70464138679, 340230958519, 1642780388791, 7932045389239, 38299303112119, 184925394005431, 892898788470199, 4311296729902519
Offset: 0

Views

Author

Clark Kimberling, Nov 11 2012

Keywords

Comments

See A214992 for a discussion of power floor sequence and the power floor function, p1(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = 2+sqrt(8), and the limit p1(r) = 3.8983688904482395322594950087206...
See A218989 for the power floor function, p4. For comparison with p1, limit(p4(r)/p1(r) = 4/3.

Examples

			a(0) = [r] = 4, where r = 2+sqrt(8).
a(1) = [4*r] = 19; a(2) = [19*r] = 91.
		

Crossrefs

Programs

  • Mathematica
    x = 2 + Sqrt[8]; z = 30; (* z = # terms in sequences *)
    f[x_] := Floor[x]; c[x_] := Ceiling[x];
    p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
    p1[n_] := f[x*p1[n - 1]]
    p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
    p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
    p4[n_] := c[x*p4[n - 1]]
    t1 = Table[p1[n], {n, 0, z}]  (* this sequence *)
    t2 = Table[p2[n], {n, 0, z}]  (* A057087 *)
    t3 = Table[p3[n], {n, 0, z}]  (* A086347 *)
    t4 = Table[p4[n], {n, 0, z}]  (* A218989 *)
  • PARI
    Vec((4 - x - 4*x^2) / ((1 - x)*(1 - 4*x - 4*x^2)) + O(x^40)) \\ Colin Barker, Nov 13 2017

Formula

a(n) = floor(x*a(n-1)), where x=2+sqrt(8), a(0) = floor(x).
a(n) = 5*a(n-1) - 4*a(n-3).
G.f.: (4 - x - 4*x^2) / ((1 - x)*(1 - 4*x - 4*x^2)). [Corrected by Colin Barker, Nov 13 2017]
a(n) = (1/28)*(4 + (54-39*sqrt(2))*(2-2*sqrt(2))^n + (2*(1+sqrt(2)))^n*(54+39*sqrt(2))). - Colin Barker, Nov 13 2017
From Philippe Deléham, Mar 18 2024: (Start)
a(n) = 4*a(n-1) + 4*a(n-2) - 1.
a(n-1) = Sum_{k = 0..n} A370174(n,k)*3^k. (End)

A218989 Power ceiling sequence of 2+sqrt(8).

Original entry on oeis.org

5, 25, 121, 585, 2825, 13641, 65865, 318025, 1535561, 7414345, 35799625, 172855881, 834622025, 4029911625, 19458134601, 93952184905, 453641278025, 2190373851721, 10576060518985, 51065737482825, 246567192007241, 1190531717960265, 5748395639870025
Offset: 0

Views

Author

Clark Kimberling, Nov 11 2012

Keywords

Comments

See A214992 for a discussion of power ceiling sequence and the power ceiling function, p4(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = 2+sqrt(8), and the limit p4(r) = (18 + 13*sqrt(2))/2 = 5.1978251872643193763459933449608678602008191971286...
See A218988 for the power floor function, p1(x); for comparison of p1 and p4, we have limit(p4(r)/p1(r) = 4 - sqrt(7).

Examples

			a(0) = ceiling(r) = 5, where r = 2+sqrt(8);
a(1) = ceiling(5*r) = 25; a(2) = ceiling(25*r) = 121.
		

Crossrefs

Programs

  • Mathematica
    (See A218988.)
  • PARI
    Vec((5 - 4*x^2) / ((1 - x)*(1 - 4*x - 4*x^2)) + O(x^40)) \\ Colin Barker, Nov 13 2017

Formula

a(n) = ceiling(x*a(n-1)), where x=2+sqrt(8), a(0) = ceiling(x).
a(n) = 5*a(n-1) - 4*a(n-3).
G.f.: (5 - 4*x^2) / ((1 - x)*(1 - 4*x - 4*x^2)). Corrected by Colin Barker, Nov 13 2017
a(n) = (1/7)*(-1 + (18-13*sqrt(2))*(2-2*sqrt(2))^n + (2*(1+sqrt(2)))^n*(18+13*sqrt(2))). - Colin Barker, Nov 13 2017

A214994 Power ceiling sequence of (golden ratio)^5.

Original entry on oeis.org

12, 134, 1487, 16492, 182900, 2028393, 22495224, 249475858, 2766729663, 30683502152, 340285253336, 3773821288849, 41852319430676, 464149335026286, 5147495004719823, 57086594386944340, 633100033261107564, 7021186960259127545, 77866156596111510560
Offset: 0

Views

Author

Clark Kimberling, Nov 09 2012

Keywords

Comments

See A214992 for a discussion of power ceiling sequence and the power ceiling function, p4(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = (golden ratio)^5, and the limit p4(r) = (1/30)*(105+47*sqrt(5)).
See A214993 for the power floor sequence and power floor function, p1. For comparison with p4, we have p4(r)/p1(r) = (5 + 3*sqrt(5))/10.

Examples

			a(0) = ceiling(r) = [11.0902]=12, where r=(1+sqrt(5))^5.
a(1) = ceiling(12) = 134; a(2) = ceiling(134 ) = 1487.
		

Crossrefs

Programs

  • Magma
    I:=[12,134,1487]; [n le 3 select I[n] else 12*Self(n-1) - 10*Self(n-2) - Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 01 2018
  • Mathematica
    (See A214993.)
    LinearRecurrence[{12,-10,-1}, {12,134,1487}, 30] (* G. C. Greubel, Feb 01 2018 *)
  • PARI
    Vec((12 - 10*x - x^2) / ((1 - x)*(1 - 11*x - x^2)) + O(x^40)) \\ Colin Barker, Nov 13 2017
    

Formula

a(n) = ceiling(x*a(n-1)), x=((1+sqrt(5))/2)^5, a(0) = ceiling(x).
a(n) = 12*a(n-1) - 10*a(n-2) - a(n-3).
G.f.: (12 - 10*x - x^2)/(1 - 12*x + 10*x^2 + x^3).
a(n) = (1/550)*(-50 + (3325-1487*sqrt(5))*((11-5*sqrt(5))/2)^n + ((11+5*sqrt(5))/2)^n*(3325+1487*sqrt(5))). - Colin Barker, Nov 13 2017
Showing 1-10 of 19 results. Next