A214999
Power floor sequence of sqrt(5).
Original entry on oeis.org
2, 4, 8, 17, 38, 84, 187, 418, 934, 2088, 4668, 10437, 23337, 52183, 116684, 260913, 583419, 1304564, 2917093, 6522818, 14585464, 32614088, 72927317, 163070438, 364636584, 815352188, 1823182917, 4076760937, 9115914583
Offset: 0
a(0) = [r] = 2, where r = sqrt(5); a(1) = [2*r] = 4; a(2) = [4*r] = 8.
-
x = Sqrt[5]; z = 30; (* z = # terms in sequences *)
f[x_] := Floor[x]; c[x_] := Ceiling[x];
p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
p1[n_] := f[x*p1[n - 1]]
p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
p4[n_] := c[x*p4[n - 1]]
Table[p1[n], {n, 0, z}] (* A214999 *)
Table[p2[n], {n, 0, z}] (* A215091 *)
Table[p3[n], {n, 0, z}] (* A218982 *)
Table[p4[n], {n, 0, z}] (* A218983 *)
A215091
Power floor-ceiling sequence of sqrt(5).
Original entry on oeis.org
2, 5, 11, 25, 55, 123, 275, 615, 1375, 3075, 6875, 15373, 34375, 76865, 171875, 384325, 859376, 1921624, 4296881, 9608119, 21484407, 48040595, 107422036, 240202975, 537110180, 1201014874, 2685550900, 6005074370, 13427754501
Offset: 0
a(0) = floor(r) = 2, where r = sqrt(5);
a(1) = ceiling(2*r) = 5; a(2) = floor(5*r) = 11.
-
(See A214999.)
nxt[{n_,a_}]:={n+1,If[OddQ[n],Floor[Sqrt[5]*a],Ceiling[Sqrt[5]*a]]}; Transpose[ NestList[nxt,{0,2},30]][[2]] (* Harvey P. Dale, Oct 27 2015 *)
A218982
Power ceiling-floor sequence of sqrt(5).
Original entry on oeis.org
3, 6, 14, 31, 70, 156, 349, 780, 1745, 3901, 8723, 19505, 43615, 97526, 218075, 487630, 1090374, 2438150, 5451870, 12190751, 27259348, 60953755, 136296740, 304768775, 681483699, 1523843876, 3407418494, 7619219380, 17037092470
Offset: 0
a(0) = ceiling(r) = 3, where r = sqrt(5);
a(1) = floor(3*r) = 6; a(2) = ceiling(6*r) = 14.
A218983
Power ceiling sequence of sqrt(5).
Original entry on oeis.org
3, 7, 16, 36, 81, 182, 407, 911, 2038, 4558, 10192, 22791, 50963, 113957, 254816, 569786, 1274081, 2848932, 6370406, 14244661, 31852031, 71223307, 159260157, 356116538, 796300787, 1780582691, 3981503937, 8902913456
Offset: 0
a(0) = ceiling(r) = 3, where r = sqrt(5);
a(1) = ceiling(3*r) = 7; a(2) = ceiling(7*r ) = 16.
A214993
Power floor sequence of (golden ratio)^5.
Original entry on oeis.org
11, 121, 1341, 14871, 164921, 1829001, 20283931, 224952241, 2494758581, 27667296631, 306835021521, 3402852533361, 37738212888491, 418523194306761, 4641493350262861, 51474950047198231, 570865943869443401, 6331000332611075641, 70211869602591275451
Offset: 0
a(0) = [r] = [11.0902] = 11, where r = (1+sqrt(5))^5.
a(1) = [11*r] = 121; a(2) = [121*r] = 1341.
- Clark Kimberling, Table of n, a(n) for n = 0..250
- Yaohui Zhu, Kaiming Sun, Zhengdong Luo, and Lingfeng Wang, Progressive Self-Learning for Domain Adaptation on Symbolic Regression of Integer Sequences, Proc. 39th AAAI Conf. Artif. Intel. (2025) Vol. 39, No. 1, 1692-1699. See p. 1698.
- Index entries for linear recurrences with constant coefficients, signature (12,-10,-1).
-
I:=[11,121,1341]; [n le 3 select I[n] else 12*Self(n-1)-10*Self(n-2)-Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 01 2018
-
x = GoldenRatio^5; z = 30; (* z = # terms in sequences *)
z1 = 100; (* z1 = # digits in approximations *)
f[x_] := Floor[x]; c[x_] := Ceiling[x];
p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
p1[n_] := f[x*p1[n - 1]]
p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
p4[n_] := c[x*p4[n - 1]]
Table[p1[n], {n, 0, z}] (* A214993 *)
Table[p2[n], {n, 0, z}] (* A049666 *)
Table[p3[n], {n, 0, z}] (* A015457 *)
Table[p4[n], {n, 0, z}] (* A214994 *)
LinearRecurrence[{12,-10,-1}, {11,121,1341}, 30] (* G. C. Greubel, Feb 01 2018 *)
-
Vec((11 - 11*x - x^2) / ((1 - x)*(1 - 11*x - x^2)) + O(x^20)) \\ Colin Barker, Nov 13 2017
A214996
Power floor-ceiling sequence of 2+sqrt(2).
Original entry on oeis.org
3, 11, 37, 127, 433, 1479, 5049, 17239, 58857, 200951, 686089, 2342455, 7997641, 27305655, 93227337, 318298039, 1086737481, 3710353847, 12667940425, 43251054007, 147668335177, 504171232695, 1721348260425, 5877050576311, 20065505784393, 68507921984951
Offset: 0
a(0) = floor(r) = 3, where r = 2+sqrt(2).
a(1) = ceiling(3*r) = 11; a(2) = floor(11*r) = 37.
-
Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((3+2*x-2*x^2)/(1-3*x-2*x^2+2*x^3))) // G. C. Greubel, Feb 02 2018
-
x = 2 + Sqrt[2]; z = 30; (* z = # terms in sequences *)
z1 = 100; (* z1 = # digits in approximations *)
f[x_] := Floor[x]; c[x_] := Ceiling[x];
p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
p1[n_] := f[x*p1[n - 1]]
p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
p4[n_] := c[x*p4[n - 1]]
Table[p1[n], {n, 0, z}] (* A007052 *)
Table[p2[n], {n, 0, z}] (* A214996 *)
Table[p3[n], {n, 0, z}] (* A214997 *)
Table[p4[n], {n, 0, z}] (* A007070 *)
-
Vec((3 + 2*x - 2*x^2) / ((1 + x)*(1 - 4*x + 2*x^2)) + O(x^40)) \\ Colin Barker, Nov 13 2017
A214997
Power ceiling-floor sequence of 2+sqrt(2).
Original entry on oeis.org
4, 13, 45, 153, 523, 1785, 6095, 20809, 71047, 242569, 828183, 2827593, 9654007, 32960841, 112535351, 384219721, 1311808183, 4478793289, 15291556791, 52208640585, 178251448759, 608588513865, 2077851157943, 7094227604041, 24221208100279, 82696377193033
Offset: 0
a(0) = ceiling(r) = 4, where r = 2+sqrt(2);
a(1) = floor(4*r) = 13; a(2) = ceiling(13*r) = 45.
-
Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((4 +x-2*x^2)/(1-3*x-2*x^2+2*x^3))); // G. C. Greubel, Feb 01 2018
-
(See A214996.)
CoefficientList[Series[(4+x-2*x^2)/(1-3*x-2*x^2+2*x^3), {x,0,50}], x] (* G. C. Greubel, Feb 01 2018 *)
-
Vec((4 + x - 2*x^2) / ((1 + x)*(1 - 4*x + 2*x^2)) + O(x^40)) \\ Colin Barker, Nov 13 2017
A218988
Power floor sequence of 2+sqrt(8).
Original entry on oeis.org
4, 19, 91, 439, 2119, 10231, 49399, 238519, 1151671, 5560759, 26849719, 129641911, 625966519, 3022433719, 14593600951, 70464138679, 340230958519, 1642780388791, 7932045389239, 38299303112119, 184925394005431, 892898788470199, 4311296729902519
Offset: 0
a(0) = [r] = 4, where r = 2+sqrt(8).
a(1) = [4*r] = 19; a(2) = [19*r] = 91.
-
x = 2 + Sqrt[8]; z = 30; (* z = # terms in sequences *)
f[x_] := Floor[x]; c[x_] := Ceiling[x];
p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
p1[n_] := f[x*p1[n - 1]]
p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
p4[n_] := c[x*p4[n - 1]]
t1 = Table[p1[n], {n, 0, z}] (* this sequence *)
t2 = Table[p2[n], {n, 0, z}] (* A057087 *)
t3 = Table[p3[n], {n, 0, z}] (* A086347 *)
t4 = Table[p4[n], {n, 0, z}] (* A218989 *)
-
Vec((4 - x - 4*x^2) / ((1 - x)*(1 - 4*x - 4*x^2)) + O(x^40)) \\ Colin Barker, Nov 13 2017
A218989
Power ceiling sequence of 2+sqrt(8).
Original entry on oeis.org
5, 25, 121, 585, 2825, 13641, 65865, 318025, 1535561, 7414345, 35799625, 172855881, 834622025, 4029911625, 19458134601, 93952184905, 453641278025, 2190373851721, 10576060518985, 51065737482825, 246567192007241, 1190531717960265, 5748395639870025
Offset: 0
a(0) = ceiling(r) = 5, where r = 2+sqrt(8);
a(1) = ceiling(5*r) = 25; a(2) = ceiling(25*r) = 121.
A214994
Power ceiling sequence of (golden ratio)^5.
Original entry on oeis.org
12, 134, 1487, 16492, 182900, 2028393, 22495224, 249475858, 2766729663, 30683502152, 340285253336, 3773821288849, 41852319430676, 464149335026286, 5147495004719823, 57086594386944340, 633100033261107564, 7021186960259127545, 77866156596111510560
Offset: 0
a(0) = ceiling(r) = [11.0902]=12, where r=(1+sqrt(5))^5.
a(1) = ceiling(12) = 134; a(2) = ceiling(134 ) = 1487.
-
I:=[12,134,1487]; [n le 3 select I[n] else 12*Self(n-1) - 10*Self(n-2) - Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 01 2018
-
(See A214993.)
LinearRecurrence[{12,-10,-1}, {12,134,1487}, 30] (* G. C. Greubel, Feb 01 2018 *)
-
Vec((12 - 10*x - x^2) / ((1 - x)*(1 - 11*x - x^2)) + O(x^40)) \\ Colin Barker, Nov 13 2017
Showing 1-10 of 19 results.
Comments