cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 31 results. Next

A006054 a(n) = 2*a(n-1) + a(n-2) - a(n-3), with a(0) = a(1) = 0, a(2) = 1.

Original entry on oeis.org

0, 0, 1, 2, 5, 11, 25, 56, 126, 283, 636, 1429, 3211, 7215, 16212, 36428, 81853, 183922, 413269, 928607, 2086561, 4688460, 10534874, 23671647, 53189708, 119516189, 268550439, 603427359, 1355888968, 3046654856, 6845771321, 15382308530, 34563733525
Offset: 0

Views

Author

Keywords

Comments

Let u(k), v(k), w(k) be defined by u(1)=1, v(1)=0, w(1)=0 and u(k+1)=u(k)+v(k)+w(k), v(k+1)=u(k)+v(k), w(k+1)=u(k); then {u(n)} = 1,1,3,6,14,31,... (A006356 with an extra initial 1), {v(n)} = 0,1,2,5,11,25,... (this sequence with its initial 0 deleted) and {w(n)} = {u(n)} prefixed by an extra 0 = A077998 with an extra initial 0. - Benoit Cloitre, Apr 05 2002. Also u(k)^2+v(k)^2+w(k)^2 = u(2k). - Gary W. Adamson, Dec 23 2003
Form the graph with matrix A=[1, 1, 1; 1, 0, 0; 1, 0, 1]. Then A006054 counts walks of length n between the vertex of degree 1 and the vertex of degree 3. - Paul Barry, Oct 02 2004
Form the digraph with matrix [1,1,0; 1,0,1; 1,1,1]. A006054(n) counts walks of length n between the vertices with loops. - Paul Barry, Oct 15 2004
Nonzero terms = INVERT transform of (1, 1, 2, 2, 3, 3, ...). Example: 56 = (1, 1, 2, 5, 11, 25) dot (3, 3, 2, 2, 1, 1) = (3 + 3 + 4 + 10 + 11 + 25). - Gary W. Adamson, Apr 20 2009
-a(n+1) appears in the formula for the nonpositive powers of rho:= 2*cos(Pi/7), the ratio of the smaller diagonal in the heptagon to the side length s=2*sin(Pi/7), when expressed in the basis <1,rho,sigma>, with sigma:=rho^2-1, the ratio of the larger heptagon diagonal to the side length, as follows. rho^(-n) = C(n)*1 + C(n-1)*rho - a(n+1)*sigma, n >= 0, with C(n)=A077998(n), C(-1):=0. See the Steinbach reference, and a comment under A052547.
If, with the above notations, the power basis of the field Q(rho) is taken one has for nonpositive powers of rho, rho^(-n) = a(n+2)*1 + A077998(n-1)*rho - a(n+1)*rho^2. For nonnegative powers see A006053. See also the Steinbach reference. - Wolfdieter Lang, May 06 2011
a(n) appears also in the nonnegative powers of sigma,(defined in the above comment, where also the basis is given). See a comment in A106803.
The sequence b(n):=(-1)^(n+1)*a(n) forms the negative part (i.e., with nonpositive indices) of the sequence (-1)^n*A006053(n+1). In this way we obtain what we shall call the Ramanujan-type sequence number 2a for the argument 2*Pi/7 (see the comment to Witula's formula in A006053). We have b(n) = -2*b(n-1) + b(n-2) + b(n-3) and b(n) * 49^(1/3) = (c(1)/c(4))^(1/3) * (c(1))^(-n) + (c(2)/c(1))^(1/3) * (c(2))^(-n) + (c(4)/c(2))^(1/3) * (c(4))^(-n) = (c(2)/c(1))^(1/3) * (c(1))^(-n+1) + (c(4)/c(2))^(1/3) * (c(2))^(-n+1) + (c(1)/c(4))^(1/3) * (c(4))^(-n+1), where c(j) := 2*cos(2*Pi*j/7) (for the proof, see the comments to A215112). - Roman Witula, Aug 06 2012
(1, 1, 2, 5, 11, 25, 56, ...) * (1, 0, 1, 0, 1, ...) = the variant of A006356: (1, 1, 3, 6, 14, 31, ...). - Gary W. Adamson, May 15 2013
The limit of a(n+1)/a(n) for n -> infinity is, for all generic sequences with this recurrence of signature (2,1,-1), sigma = rho^2-1, approximately 2.246979603, the length ratio (largest diagonal)/side in the regular heptagon (7-gon). For rho = 2*cos(Pi/7) and sigma see a comment above, and the P. Steinbach reference. Proof: a(n+1)/a(n) = 2 + 1/(a(n)/a(n-1)) - 1/((a(n)/a(n-1))*(a(n-1)/a(n-2))), leading in the limit to sigma^3 -2*sigma^2 - sigma + 1, which is solved by sigma = rho^2-1, due to C(7, rho) = 0 , with the minimal polynomial C(7, x) = x^3 - x^2 - 2*x + 1 of rho (see A187360). - Wolfdieter Lang, Nov 07 2013
Numbers of straight-chain aliphatic amino acids involving single, double or triple bonds (allowing adjacent double bonds) when cis/trans isomerism is neglected. - Stefan Schuster, Apr 19 2018
Let A(r,n) be the total number of ordered arrangements of an n+r tiling of r red squares and white tiles of total length n, where the individual tile lengths can range from 1 to n. A(r,0) corresponds to a tiling of r red squares only, and so A(r,0) = 1. Also, A(r,n)=0 for n<0. Let A_1(r,n) = Sum_{j=0..n} A(r,j). Then the expansion of 1/(1 - 2*x - x^2 + x^3) is A_1(0,n) + A_1(1,n-2) + A_1(n-4) + ... = a(n) without the initial two 0's. In general, the expansion of 1/(1 - 2*x -x^k + x^(k+1)) is equal to Sum_{j>=0} A_1(j, n-j*k). - Gregory L. Simay, May 25 2018
For n>1, a(n) is the number of ways to tile a strip of length n-1 with one color of squares and dominos, two colors of trominos and quadrominos, 3 colors of 5-minos and 6-minos, and so on. - Greg Dresden and Zhiyu Zhang, Jun 26 2025

Examples

			G.f. = x^2 + 2*x^3 + 5*x^4 + 11*x^5 + 25*x^6 + 56*x^7 + 126*x^8 + 283*x^9 + ... - _Michael Somos_, Jun 25 2018
		

References

  • Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006054 n = a006053_list !! n
    a006054_list = 0 : 0 : 1 : zipWith (+) (map (2 *) $ drop 2 a006054_list)
       (zipWith (-) (tail a006054_list) a006054_list)
    -- Reinhard Zumkeller, Oct 14 2011
  • Maple
    A006054:=z**2/(1-2*z-z**2+z**3); # Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{2, 1, -1}, {0, 0, 1}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 10 2012 *)
  • Maxima
    a(n):=if n<2 then 0 else if n=2 then 1 else b(n-2);
    b(n):=sum(sum(binomial(j,n-3*k+2*j)*(-1)^(j-k)*binomial(k,j)*2^(-n+3*k-j),j,0,k),k,1,n); /* Vladimir Kruchinin, May 05 2011 */
    
  • PARI
    x='x+O('x^66);
    concat([0, 0], Vec(x^2/(1-2*x-x^2+x^3))) \\ Joerg Arndt, May 05 2011
    

Formula

G.f.: x^2/(1-2*x-x^2+x^3).
Sum_{k=0..n+2} a(k) = A077850(n). - Philippe Deléham, Sep 07 2006
Let M = the 3 X 3 matrix [1,1,0; 1,2,1; 0,1,2], then M^n*[1,0,0] = [A080937(n-1), A094790(n), A006054(n-1)]. E.g., M^3*[1,0,0] = [5,9,5] = [A080937(2), A094790(3), A006054(2)]. - Gary W. Adamson, Feb 15 2006
a(n) = round(k*A006356(n-1)), for n>1, where k = 0.3568958678... = 1/(1+2*cos(Pi/7)). - Gary W. Adamson, Jun 06 2008
a(n+1) = A187070(2n+1) = A187068(2n+3). - L. Edson Jeffery, Mar 10 2011
a(n+3) = Sum_{k=1..n} Sum_{j=0..k} binomial(j,n-3*k+2*j)*(-1)^(j-k)*binomial(k,j)*2^(-n+3*k-j); a(0)=0, a(1)=0, a(2)=1. - Vladimir Kruchinin, May 05 2011
7*a(n) = (c(2)-c(4))*(1+c(1))^n + (c(4)-c(1))*(1+c(2))^n + (c(1)-c(2))*(1+c(4))^n, where c(j):=2*cos(2*Pi*j/7) - for the proof see Witula et al. papers. - Roman Witula, Aug 07 2012
a(n) = -A006053(1-n) for all n in Z. - Michael Somos, Jun 25 2018

A006356 a(n) = 2*a(n-1) + a(n-2) - a(n-3) for n >= 3, starting with a(0) = 1, a(1) = 3, and a(2) = 6.

Original entry on oeis.org

1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, 4004, 8997, 20216, 45425, 102069, 229347, 515338, 1157954, 2601899, 5846414, 13136773, 29518061, 66326481, 149034250, 334876920, 752461609, 1690765888, 3799116465, 8536537209, 19181424995
Offset: 0

Views

Author

Keywords

Comments

Number of distributive lattices; also number of paths with n turns when light is reflected from 3 glass plates.
Let u(k), v(k), w(k) be defined by u(1) = 1, v(1) = 0, w(1) = 0 and u(k+1) = u(k) + v(k) + w(k), v(k+1) = u(k) + v(k), w(k+1) = u(k); then {u(n)} = 1, 1, 3, 6, 14, 31, ... (this sequence with an extra initial 1), {v(n)} = 0, 1, 2, 5, 11, 25, ... (A006054 with its initial 0 deleted) and {w(n)} = {u(n)} prefixed by an extra 0 = A077998 with an extra initial 0. - Benoit Cloitre, Apr 05 2002
Also u(k)^2 + v(k)^2 + w(k)^2 = u(2*k). - Gary W. Adamson, Dec 23 2003
The n-th term of the series is the number of paths for a ray of light that enters two layers of glass and then is reflected exactly n times before leaving the layers of glass.
One such path (with 2 plates of glass and 3 reflections) might be:
...\........./..................
--------------------------------
....\/\..../....................
--------------------------------
........\/......................
--------------------------------
For a k-glass sequence, say a(n,k), a(n,k) is always asymptotic to z(k)*w(k)^n where w(k) = (1/2)/cos(k*Pi/(2*k+1)) and it is conjectured that z(k) is the root 1 < x < 2 of a polynomial of degree Phi(2k+1)/2.
Number of ternary sequences of length n-1 such that every pair of consecutive digits has a sum less than 3. That is to say, the pairs (1,2), (2,1) and (2,2) do not appear. - George J. Schaeffer (gschaeff(AT)andrew.cmu.edu), Sep 07 2004
Number of weakly up-down sequences of length n using the digits {1,2,3}. When n=2 the sequences are 11, 12, 13, 22, 23, 33.
Form the graph with matrix A = [1, 1, 1; 1, 0, 0; 1, 0, 1]. Then A006356 counts walks of length n that start at the degree 4 vertex. - Paul Barry, Oct 02 2004
In general, the g.f. for p glass plates is: A(x) = F_{p-1}(-x)/F_p(x) where F_p(x) = Sum_{k=0..p} (-1)^[(k+1)/2]*C([(p+k)/2],k)*x^k. - Paul D. Hanna, Feb 06 2006
Equals the INVERT transform of (1, 2, 1, 1, 1, ...) equivalent to a(n) = a(n-1) + 2*a(n-2) + a(n-3) + a(n-4) + ... + 1. a(6) = 70 = (31 + 2*14 + 6 + 3 + 1 + 1). - Gary W. Adamson, Apr 27 2009
a(n) = the number of terms in the n-th iterate of sequence A179542 generated from the rules a(0) = 1, then (1->1,2,3), (2->1,2), (3->1).
Example: 3rd iterate = (1,2,3,1,2,1,1,2,3,1,2,1,2,3) = 14 terms composed of a frequency of (6, 5, 3): (1's, 2's, and 3's), where a(3) = 14, and the [6, 5, 3] = top row and left column of the 3rd power of M, the matrix generator [1,1,1; 1,1,0; 1,0,0] or a(2) = 6, A006054(4) = 5, and a(1) = 3.
Given the heptagon diagonal lengths with edge = 1: (a = 1, b = 1.80193773..., c = 2.24697...) = (1, 2*cos(Pi/7), (1 + 2*cos(2*Pi/7))), and using the diagonal product formulas in [Steinbach], we obtain: c^n = c*a(n-2) + b*A006054(n) + a(n-3) corresponding to the top row of M^(n-1), in the case M^3 = [6, 5, 3]. Example: c^4 = 25.491566... = 6*c + 5*b + 3 = 13.481... + 9.00968... + 3. - Gary W. Adamson, Jul 18 2010
Equals row sums of triangle A180262. - Gary W. Adamson, Aug 21 2010
The number of the one-sided n-step prudent walks, avoiding 2 or more consecutive east steps. - Shanzhen Gao, Apr 27 2011
a(n) = [A_{7,2}^(n+2)](1,1), where A{7,2} is the 3 X 3 unit-primitive matrix (see [Jeffery]) A_{7,2} = [0,0,1; 0,1,1; 1,1,1]. The denominator of the generating function for this sequence is also the characteristic polynomial of A_{7,2}. - L. Edson Jeffery, Dec 06 2011 [See the comments for sequence A306334. - Petros Hadjicostas, Nov 17 2019]
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [1, 1, 1; 1, 0, 0; 1, 0, 1] or of the 3 X 3 matrix [1, 1, 1; 1, 1, 0; 1, 0, 0]. - R. J. Mathar, Feb 03 2014
Successive sequences in this set (A006356, A006357, A006358, etc.) can be generated as follows: Begin with (1, 1, 1, 1, 1, 1, ...); and perform an operation with three steps to get the next sequence in the series. First, put alternate signs in the current series: With (1, 1, 1, ...) this equals (1, -1, 1, -1, ...); then take the inverse, getting (1, 1, 0, 0, 0, ...). Take the INVERT transform of the last step, getting (1, 2, 3, 5, 8, ...). Repeat the three steps using (1, 2, 3, 5, ...) --> (1, -2, 3, -5) --> (1, 2, 1, 1, 1, ...) --> (1, 3, 6, 14, 31, ...). Repeat the three steps using (1, 3, 6, 14, 31, ...), getting (1, 4, 10, 30, 85, ...) = A006357; and so on. - Gary W. Adamson, Aug 08 2019
Let W_n be the fence poset (a.k.a. zig-zag poset) of size n. Let [2] be a chain of size 2. Then a(n) is the number of antichains in the product poset W_n X [2]. See Berman- Koehler link. - Geoffrey Critzer, Jun 13 2023
a(n) is the number of double-dimer covers of the 2 X (n+1) square grid graph. See Musiker et al. link. - Nicholas Ovenhouse, Jan 07 2024
In general, the number of weakly up-down words of length n over an alphabet of size k is given by 4/(2*k+1)*|Sum_{j = 1..k} sin^2(2*j*Pi/(2*k+1))/(2*cos^2(2*j*Pi/(2*k+1)))^(n+1)| and the corresponding g. f. is given by V_(k-1)(-x/2)/W_k(x/2) if k is even and -W_(k-1)(-x/2) / V_k(x/2) if k is odd, where V_m(x) and W_m(x) are the Chebyshev polynomials of the third and fourth kind, respectively (see Paul D. Hanna's comment above and the Fried link). - Sela Fried, Apr 01 2025

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd edition, p. 291 (very briefly without generalizations).
  • J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
  • Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A038196 (3-wave sequence).
Cf. A179542. - Gary W. Adamson, Jul 18 2010
Cf. A180262. - Gary W. Adamson, Aug 21 2010

Programs

  • Haskell
    a006056 n = a006056_list !! n
    a006056_list = 1 : 3 : 6 : zipWith (+) (map (2 *) $ drop 2 a006056_list)
       (zipWith (-) (tail a006056_list) a006056_list)
    -- Reinhard Zumkeller, Oct 14 2011
    
  • Magma
    [ n eq 1 select 1 else n eq 2 select 3 else n eq 3 select 6 else 2*Self(n-1)+Self(n-2)- Self(n-3): n in [1..40] ] ; // Vincenzo Librandi, Aug 20 2011
    
  • Maple
    A006356:=-(-1-z+z**2)/(1-2*z-z**2+z**3); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{2,1,-1},{1,3,6},30] (* or *) CoefficientList[ Series[ (1+x-x^2)/(1-2x-x^2+x^3),{x,0,30}],x] (* Harvey P. Dale, Jul 06 2011 *)
    Table[If[n==0, a2=0; a1=1; a0=1, a3=a2; a2=a1; a1=a0; a0=2*a1+a2-a3], {n, 0, 29}] (* Jean-François Alcover, Apr 30 2013 *)
  • Maxima
    a(n):=sum(sum((sum(binomial(j,-3*k+2*j+i)*(-1)^(j-k)*binomial(k,j),j,0,k))*binomial(n+k-i-1,k-1),i,k,n),k,1,n); /* Vladimir Kruchinin, May 05 2011 */
    
  • PARI
    {a(n)=local(p=3);polcoeff(sum(k=0,p-1,(-1)^((k+1)\2)*binomial((p+k-1)\2,k)* (-x)^k)/sum(k=0,p,(-1)^((k+1)\2)*binomial((p+k)\2,k)*x^k+x*O(x^n)),n)} \\ Paul D. Hanna, Feb 06 2006
    
  • PARI
    Vec((1+x-x^2)/(1-2*x-x^2+x^3)+O(x^66)) \\ Joerg Arndt, Apr 30 2013
    
  • Python
    from math import comb
    def A006356(n): return sum(comb(j,a)*comb(k,j)*comb(n+k-i,k-1)*(-1 if j-k&1 else 1) for k in range(1,n+2) for i in range(k,n+2) for j in range(k+1) if (a:=-3*k+2*j+i)>=0) # Chai Wah Wu, Feb 19 2024

Formula

a(n) is asymptotic to z(3)*w(3)^n where w(3) = (1/2)/cos(3*Pi/7) and z(3) is the root 1 < X < 2 of P(3, X) = 1 - 14*X - 49*X^2 + 49*X^3. w(3) = 2.2469796.... z(3) = 1.220410935...
G.f.: (1 + x - x^2)/(1 - 2*x - x^2 + x^3). - Paul D. Hanna, Feb 06 2006
a(n) = a(n-1) + a(n-2) + A006054(n+1). - Gary W. Adamson, Jun 05 2008
a(n) = A006054(n+2) + A006054(n+1) - A006054(n). - R. J. Mathar, Apr 07 2011
a(n-1) = Sum_{k = 1..n} Sum_{i = k..n} Sum_{j = 0..k} binomial(j, -3*k+2*j+i) * (-1)^(j-k) * binomial(k, j) * binomial(n+k-i-1, k-1). - Vladimir Kruchinin, May 05 2011
Sum_{k=0..n} a(k) = a(n+1) - a(n-1) - 1. - Greg Dresden and Mina BH Arsanious, Aug 23 2023

Extensions

Recurrence, alternative description from Jacques Haubrich (jhaubrich(AT)freeler.nl)
Alternative definition added by Andrew Niedermaier, Nov 11 2008

A160389 Decimal expansion of 2*cos(Pi/7).

Original entry on oeis.org

1, 8, 0, 1, 9, 3, 7, 7, 3, 5, 8, 0, 4, 8, 3, 8, 2, 5, 2, 4, 7, 2, 2, 0, 4, 6, 3, 9, 0, 1, 4, 8, 9, 0, 1, 0, 2, 3, 3, 1, 8, 3, 8, 3, 2, 4, 2, 6, 3, 7, 1, 4, 3, 0, 0, 1, 0, 7, 1, 2, 4, 8, 4, 6, 3, 9, 8, 8, 6, 4, 8, 4, 0, 8, 5, 5, 8, 7, 9, 9, 3, 1, 0, 0, 2, 7, 2, 2, 9, 0, 9, 4, 3, 7, 0, 2, 4, 8, 3, 0, 6, 3, 6, 6, 2
Offset: 1

Views

Author

Harry J. Smith, May 31 2009

Keywords

Comments

Arises in the approximation of 14-fold quasipatterns by 14 Fourier modes.
Let DTS(n^c) denote the set of languages accepted by a deterministic Turing machine with space n^(o(1)) and time n^(c+o(1)), and let SAT denote the Boolean satisfiability problem. Then (1) SAT is not in DTS(n^c) for any c < 2*cos(Pi/7), and (2) the Williams inference rules cannot prove that SAT is not in DTS(n^c) for any c >= 2*cos(Pi/7). These results also apply to the Boolean satisfiability problem mod m where m is in A085971 except possibly for one prime. - Charles R Greathouse IV, Jul 19 2012
rho(7):= 2*cos(Pi/7) is the length ratio (smallest diagonal)/side in the regular 7-gon (heptagon). The algebraic number field Q(rho(7)) of degree 3 is fundamental for the 7-gon. See A187360 for the minimal polynomial C(7, x) of rho(7). The other (larger) diagonal/side ratio in the heptagon is sigma(7) = -1 + rho(7)^2, approx. 2.2469796. (see the decimal expansion in A231187). sigma(7) is the limit of a(n+1)/a(n) for n->infinity for the sequences like A006054 and A077998 which can be considered as analogs of the Fibonacci sequence in the pentagon. Thus sigma(7) plays in the heptagon the role of the golden section in the pentagon. See the P. Steinbach reference. - Wolfdieter Lang, Nov 21 2013
An algebraic integer of degree 3 with minimal polynomial x^3 - x^2 - 2x + 1. - Charles R Greathouse IV, Nov 12 2014
The other two solutions of the minimal polynomial of rho(7) = 2*cos(Pi/7) are 2*cos(3*Pi/7) and 2*cos(5*Pi/7). See eq. (20) of the W. Lang link. - Wolfdieter Lang, Feb 11 2015
The constant is the square root of 3.24697... (cf. A116425). It is the fifth-longest diagonal in the regular 14-gon with unit radius, which equals 2*sin(5*Pi/14). - Gary W. Adamson, Feb 14 2022

Examples

			1.801937735804838252472204639014890102331838324263714300107124846398864...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 207.

Crossrefs

Cf. A039921 (continued fraction).
Cf. A003558 (the constant is cyclic with period 3, for N = 7).

Programs

  • Magma
    R:= RealField(200); Reverse(Intseq(Floor(10^110*2*Cos(Pi(R)/7)))); // Marius A. Burtea, Nov 13 2019
  • Maple
    evalf(2*cos(Pi/7), 100); # Wesley Ivan Hurt, Feb 01 2017
  • Mathematica
    RealDigits[2 Cos[Pi/7], 10, 111][[1]] (* Robert G. Wilson v, Jun 11 2013 *)
  • PARI
    default(realprecision, 20080); x=2*cos(Pi/7); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b160389.txt", n, " ", d));
    

Formula

Equals 2*A073052. - Michel Marcus, Nov 21 2013
Equals (Re((-(4*7)*(1 + 3*sqrt(3)*i))^(1/3)) + 1)/3, with the real part Re, and i = sqrt(-1). - Wolfdieter Lang, Feb 24 2015
Equals i^(2/7) - i^(12/7). - Peter Luschny, Apr 04 2020
From Peter Bala, Oct 20 2021: (Start)
Equals 2 - (1 - z)*(1 - z^6)/((1 - z^3)*(1 - z^4)), where z = exp(2*Pi*i/7).
The other two zeros of the minimal polynomial x^3 - x^2 - 2*x + 1 of 2*cos(Pi/7) are given by 2 - (1 - z^3)*(1 - z^4)/((1 - z^2)*(1 - z^5)) = 2*cos(3*Pi/7) = A255241 and 2 - (1 - z^2)*(1 - z^5)/((1 - z)*(1 - z^6)) = cos(5*Pi/7) = -A362922.
Equals Product_{n >= 0} (7*n+2)*(7*n+5)/((7*n+1)*(7*n+6)) = 1 + Product_{n >= 0} (7*n+2)*(7*n+5)/((7*n+3)*(7*n+4)) = 1/A255240.
The linear fractional mapping r -> 1/(1 - r) cyclically permutes the three zeros of the minimal polynomial x^3 - x^2 - 2*x + 1. The inverse mapping is r -> (r - 1)/r.
The quadratic mapping r -> 2 - r^2 also cyclically permutes the three zeros. The inverse mapping is r -> r^2 - r - 1. (End)
Equals i^(2/7) + i^(-2/7). - Gary W. Adamson, Feb 11 2022
From Amiram Eldar, Nov 22 2024: (Start)
Equals Product_{k>=1} (1 - (-1)^k/A047336(k)).
Equals 1 + cosec(3*Pi/14)/2 = 1 + Product_{k>=1} (1 + (-1)^k/A047341(k)). (End)
Equals sqrt(A116425). - Hugo Pfoertner, Nov 22 2024

A005021 Random walks (binomial transform of A006054).

Original entry on oeis.org

1, 5, 19, 66, 221, 728, 2380, 7753, 25213, 81927, 266110, 864201, 2806272, 9112264, 29587889, 96072133, 311945595, 1012883066, 3288813893, 10678716664, 34673583028, 112584429049, 365559363741, 1186963827439, 3854047383798, 12514013318097, 40632746115136
Offset: 0

Views

Author

Keywords

Comments

Number of walks of length 2n+5 in the path graph P_6 from one end to the other one. Example: a(1)=5 because in the path ABCDEF we have ABABCDEF, ABCBCDEF, ABCDCDEF, ABCDEDEF and ABCDEFEF. - Emeric Deutsch, Apr 02 2004
Since a(n) is the binomial transform of A006054 from formula (3.63) in the Witula-Slota-Warzynski paper, it follows that a(n)=A(n;1)*(B(n;-1)-C(n;-1))-B(n;1)*B(n;-1)+C(n;1)*(A(n;-1)-B(n;-1)+C(n;-1)), where A(n;1)=A077998(n), B(n;1)=A006054(n+1), C(n;1)=A006054(n), A(n;-1)=A121449(n), B(n+1;-1)=-A085810(n+1), C(n;-1)=A215404(n) and A(n;d), B(n;d), C(n;d), n in N, d in C, denote the quasi-Fibonacci numbers defined and discussed in comments in A121449 and in the cited paper. - Roman Witula, Aug 09 2012
From Wolfdieter Lang, Mar 30 2020: (Start)
With offset -4 this sequence 6, 1, 0, 0, 1, 5, ... appears in the formula for the n-th power of the 3 X 3 tridiagonal Matrix M_3 = Matrix([1,1,0], [1,2,1], [0,1,2]) from A332602: (M_3)^n = a(n-2)*(M_3)^2 - (6*a(n-3) - a(n-4))*M_3 + a(n-3)*1_3, with the 3 X 3 unit matrix 1_3, for n >= 0. Proof from Cayley-Hamilton: (M_3)^n = 5*(M_3)^3 - 6*M_3 + 1_3 (see A332602 for the characteristic polynomial Phi(3, x)), and the recurrence (M_3)^n = M_3*(M_3)^(n-1). For (M_3)^n[1,1] = 2*a(n-2) - 5*a(n-3) + a(n-4), for n >= 0, see A080937(n).
The formula for a(n) in terms of r = rho(7) = A160389 given below shows that a(n)/a(n-1) converges to rho(7)^2 = A116425 = 3.2469796... for n -> infinity. This is because r - 2/r = 0.692..., and r - 1 - 1/r = 0.137... .
(End)

References

  • W. Feller, An Introduction to Probability Theory and its Applications, 3rd ed, Wiley, New York, 1968, p. 96.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Double partial sums of A060557. Bisection of A052547.

Programs

  • Magma
    I:=[1,5,19]; [n le 3 select I[n] else 5*Self(n-1)-6*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 18 2015
    
  • Maple
    a:=k->sum(binomial(5+2*k,7*j+k-2),j=ceil((2-k)/7)..floor((7+k)/7))-sum(binomial(5+2*k,7*j+k-1),j=ceil((1-k)/7)..floor((6+k)/7)): seq(a(k),k=0..25);
    A005021:=-(z-1)*(z-5)/(-1+5*z-6*z**2+z**3); # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence apart from the initial 1
  • Mathematica
    LinearRecurrence[{5,-6,1}, {1,5,19}, 50] (* Roman Witula, Aug 09 2012 *)
    CoefficientList[Series[1/(1 - 5 x + 6 x^2 - x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 18 2015 *)
  • PARI
    x='x+O('x^30); Vec(1/(1-5*x+6*x^2-x^3)) \\ G. C. Greubel, Apr 19 2018

Formula

G.f.: 1/(1-5x+6x^2-x^3). - Emeric Deutsch, Apr 02 2004
a(n) = 5*a(n-1) -6*a(n-2) +a(n-3). - Emeric Deutsch, Apr 02 2004
a(n) = Sum_{j=-infinity..infinity} (binomial(5+2*k, 7*j+k-2) - binomial(5+2*k, 7*j+k-1)) (a finite sum).
a(n-2) = 2^n*C(n;1/2)=(1/7)*((c(2)-c(4))*(c(4))^(2n) + (c(4)-c(1))*(c(1))^(2n) + (c(1)-c(2))*(c(2))^(2n)), where a(-2)=a(-1):=0, c(j):=2*cos(2Pi*j/7). This formula follows from the Binet formula for C(n;d)--one of the quasi-Fibonacci numbers (see comments in A121449 and the formula (3.17) in the Witula-Slota-Warzynski paper). - Roman Witula, Aug 09 2012
In terms of the algebraic number r = rho(7) = 2*cos(Pi/7) = A160389 of degree 3 the preceding formula gives a(n) = r^(2*(n+2))*(A1(r) + A2(r)*(r - 2/r)^(2*(n+1)) = A3(r)*(r - 1 - 1/r)^(2*(n+1)))/7, for n >= -4 (see a comment above for this offset), with A1(r) = -r^2 + 2*r + 1, A2(r) = -r^2 - r + 2, and A3(r) = 2*r^2 - r - 3. - Wolfdieter Lang, Mar 30 2020

Extensions

a(25)-a(26) from Vincenzo Librandi, Sep 18 2015

A033304 Expansion of (2 + 2*x - 3*x^2) / (1 - 2*x - x^2 + x^3).

Original entry on oeis.org

2, 6, 11, 26, 57, 129, 289, 650, 1460, 3281, 7372, 16565, 37221, 83635, 187926, 422266, 948823, 2131986, 4790529, 10764221, 24186985, 54347662, 122118088, 274396853, 616564132, 1385407029, 3112981337, 6994805571, 15717185450
Offset: 0

Views

Author

Keywords

Comments

From L. Edson Jeffery, Mar 22 2011: (Start)
Let A be the unit-primitive matrix (see [Jeffery])
A=A_(7,2)=
(0 0 1)
(0 1 1)
(1 1 1).
Let B={b(n)} be this sequence shifted to the right one place and setting b(0)=3. Then B=(3,2,6,11,26,...) with generating function (3-4*x-x^2)/(1-2*x-x^2+x^3) and b(n)=Trace(A^n). (End)
The following identity hold true (a(n)^2 - a(2n+2))/2 = A094648(n+1) = (-1)^(n+1)*A096975(n+1) - for the proof see Witula et al.'s papers - Roman Witula, Jul 25 2012
We note that the joined sequences (-1)^(n+1)*a(n) and A094648(n) form a two-sided sequence defined either by the recurrence formula x(n+3) + x(n+2) - 2x(n+1) - x(n) = 0, n in Z, x(0)=3, x(-1)=-2, x(1)=-1, or by the following trigonometric identities: x(n) = (c(1))^n + (c(2))^n + (c(4))^n = (c(1)c(2))^(-n) + (c(1)c(4))^(-n) + (c(2)c(4))^(-n) = (s(2)/s(1))^n + (s(4)/s(2))^n + (s(1)/s(4))^n, for n in Z, where c(j) := 2*cos(2Pi*j/7) and s(j) := sin(2*Pi*j/7) - for the proof see Witula's and Witula et al.'s papers. - Roman Witula, Jul 25 2012
We have 4*a(n+2) - a(n) = 7*A077998(n+2). - Roman Witula, Aug 13 2012
Two very intriguing identities of trigonometric nature hold: (-1)^n*(a(n)-a(n-1)) = c(1)*c(2)^(-n) + c(2)*c(4)^(-n) + c(4)*c(1)^(-n), and (-1)^(n+1)*(a(n-1)-a(n+1)) = c(1)*c(4)^(-n-1) + c(2)*c(1)^(-n-1) + c(4)*c(2)^(-n-1), where a(-1):=3 and c(j) is defined as above. For the proof see Remark 6 in the first Witula's paper. - Roman Witula, Aug 14 2012
With respect to the form of the trigonometric formulas describing a(n), we call this sequence the Berndt-type sequence number 20 for the argument 2Pi/7. The A-numbers of other Berndt-type sequences numbers are given in below. - Roman Witula, Sep 30 2012

References

  • R. P. Stanley, Enumerative Combinatorics I, p. 244, Eq. (36).

Crossrefs

Programs

  • Magma
    I:=[2,6,11]; [n le 3 select I[n] else 2*Self(n-1) +Self(n-2) - Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 19 2018
  • Mathematica
    CoefficientList[Series[(2+2x-3x^2)/(1-2x-x^2+x^3),{x,0,50}], x]  (* Harvey P. Dale, Mar 14 2011 *)
    LinearRecurrence[{2, 1, -1}, {2, 6, 11}, 29] (* Jean-François Alcover, Sep 27 2017 *)
  • PARI
    {a(n)=if(n<0, n=-n; polsym(x^3-x^2-2*x+1,n-1)[n], n+=2; polsym(1-x-2*x^2+x^3,n-1)[n])} /* Michael Somos, Aug 03 2006 */
    
  • PARI
    x='x+O('x^99); Vec((2+2*x-3*x^2)/(1-2*x-x^2+x^3)) \\ Altug Alkan, Apr 19 2018
    

Formula

a(-1-n) = A096975(n).
a(n) = (1-2*cos(1/7*Pi))^(n+1)+(1+2*cos(2/7*Pi))^(n+1)+(1-2*cos(3/7*Pi))^(n+1). - Vladeta Jovovic, Jun 27 2001
a(n) = trace of (n+1)-th power of the 3 X 3 matrix (in the example of A066170): [1 1 1 / 1 1 0 / 1 0 0]. Alternatively, the sum of the (n+1)st powers of the roots of the corresponding characteristic polynomial: x^3 - 2*x^2 - x + 1 = 0. a(n) = A006356(n) + A006356(n-1) + 2*A006356(n-2). E.g., a(3) = 26 = the trace of M^4. The characteristic polynomial of this matrix (see A066170) is x^3 - 2*x^2 - x + 1 and the roots are 2.24697960372..., -0.8019377358... and 0.55495813208... = a, b, c. Then Sum(a^4 + b^4 + c^4) = 26. - Gary W. Adamson, Feb 01 2004
(-1)^(n+1)*a(n) = (c(1))^(-n-1) + (c(2))^(-n-1) + (c(3))^(-n-1) = (c(1)c(2))^(n+1) + (c(1)c(4))^(n+1) + (c(2)c(4))^(n+1) = (s(1)/s(2))^(n+1) + (s(2)/s(4))^(n+1) + (s(4)/s(1))^(n+1), where c(j) := 2*cos(2*Pi*j/7) and s(j) := sin(2*Pi*j/7) - for the proof see Witula's and Witula et al.'s papers. - Roman Witula, Jul 25 2012
a(n) = 3*A077998(n+1) - A006054(n+2) - A006054(n+1). - Roman Witula, Aug 13 2012
a(n)*(-1)^(n+1) = (A094648(n+1)^2 - A094648(2*(n+1)))/2. - Roman Witula, Sep 30 2012

A094648 An accelerator sequence for Catalan's constant.

Original entry on oeis.org

3, -1, 5, -4, 13, -16, 38, -57, 117, -193, 370, -639, 1186, -2094, 3827, -6829, 12389, -22220, 40169, -72220, 130338, -234609, 423065, -761945, 1373466, -2474291, 4459278, -8034394, 14478659, -26088169, 47011093, -84708772, 152642789, -275049240
Offset: 0

Views

Author

Paul Barry, May 18 2004

Keywords

Comments

The pair A094648 and the alternating sequence A033304 when joined form a two-sided sequence defined by the recurrence formula x(n+3) + x(n+2) - 2x(n+1) - x(n) = 0, n in Z, x(-1)=-2, x(0)=3, x(1)=-1 - for details see Witula's comments to A033304. - Roman Witula, Jul 25 2012
From Roman Witula, Aug 09 2012: (Start)
There exist two interesting subsequences b(n) and c(n) of the given above sequence x(n) defined by the following relations: b(n)=a(2^n) and c(n)=x(-2^n). These subsequences satisfy the following system of recurrence equations:
b(n+1)=b(n)^2-2*c(n), and c(n+1)=c(n)^2-2*b(n),
which easily follow from the general identity: x(n)^2=x(2*n)-2*x(-n), n in Z. We note that b(0)=-1, b(1)=5, b(2)=13, b(3)=117, c(0)=-2, c(1)=6, c(2)=26, c(3)=650. From the above system we deduce that all b(n) are odd, whereas all c(n) are even. Moreover we obtain c(n+1)-b(n+1)=(c(n)-b(n))*(b(n)+c(n)+2), which yields b(n+1)-c(n+1)=product{k=1,..,n}(b(k)+c(k)+2)=13*product{k=2,..,n}(b(k)+c(k)+2)=13^2*41*product{k=3,..,n}(b(k)+c(k)+2). It follows that b(n)-c(n) is divisible by 13^2*41 for every n=3,4,..., and after using the above system again each b(n) and c(n), for n=2,3,..., is divisible by 13. (End)
If we set W(n):=3*A077998(n)-A006054(n+1)-A006054(n), n=0,1,..., then a(n)=(W(n)^2-W(2*n))/2 and W(n) = (-c(1))^(-n) + (-c(2))^(-n) + (-c(4))^(-n) = (-c(1)*c(2))^n + (-c(1)*c(4))^n + (-c(2)*c(4))^n = (-1-c(1))^n + (-1-c(2))^n + (-1-c(4))^n, where c(j):=2*cos(2*Pi*j/7) - for the proof see Witula-Slota-Warzynski's paper. Moreover it follows from the comment at the top and from comments to A033304 that W(n+1)=A033304(n)=(-1)^(n+1)*x(-n-1). - Roman Witula, Aug 11 2012
The following trigonometric type identitities hold true: (1) -a(n-1)-a(n) = c(1)*c(2)^n + c(2)*c(4)^n + c(4)*c(1)^n and (2) a(n)-a(n+2) = c(4)*c(2)^(n+1) + c(1)*c(4)^(n+1) + c(2)*c(1)^(n+1), where a(-1)=-2 and c(j) is defined as above (see also the respective comment to A033304). For the proof see Remark 6 in Witula's paper. - Roman Witula, Aug 14 2012
It can be proved that A033304(n-1)*(-1)^n = (a(n)^2 - a(2*n))/2, n=1,2,... - Roman Witula, Sep 30 2012
With respect to the form of the trigonometric formulas describing a(n), we call this sequence the Berndt-type sequence number 19 for the argument 2*Pi/7. The A-numbers of other Berndt-type sequences numbers are given in below. - Roman Witula, Sep 30 2012

Examples

			We have a(17) = a(19) + 50000, a(4) + a(5) = -3, 2*a(7) + a(8) = 3, and 2*a(9) + a(10) = a(5). - _Roman Witula_, Sep 14 2012
		

Crossrefs

Programs

  • Magma
    I:=[3,-1,5]; [n le 3 select I[n]  else -Self(n-1)+2*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jul 25 2015
    
  • Mathematica
    CoefficientList[ Series[(3 + 2x - 2x^2)/(1 + x - 2x^2 - x^3), {x, 0, 33}], x] (* Robert G. Wilson v, May 24 2004 *)
    a[n_] := Round[(2Sin[3Pi/14])^n + (-2Sin[Pi/14])^n + (-2Cos[Pi/7])^n]; Table[ a[n], {n, 0, 33}] (* Robert G. Wilson v, May 24 2004 *)
    LinearRecurrence[{-1,2,1}, {3,-1,5}, 50] (* Roman Witula, Aug 09 2012 *)
  • PARI
    x='x+O('x^30); Vec((3+2*x-2*x^2)/(1+x-2*x^2-x^3)) \\ G. C. Greubel, May 09 2018

Formula

G.f.: (3+2*x-2*x^2)/(1+x-2*x^2-x^3);
a(n) = (2*sin(3*Pi/14))^n+(-2*sin(Pi/14))^n+(-2*cos(Pi/7))^n.
a(p) == -1 mod(p), p prime. - Philippe Deléham, Oct 03 2009
a(n) = (2*cos(2*Pi/7))^n + (2*cos(4*Pi/7))^n + (2*cos(8*Pi/7))^n, which is equivalent to the formula given above (for analogous sums with sines see A215493 and A215494). Moreover we have a(n+3) + a(n+2) - 2a(n+1) - a(n) = 0 - for the proof see Witula-Slota's paper. - Roman Witula, Jul 24 2012
a(n) = 3*(-1)^n*A006053(n+2) +2*A078038(n-1). - R. J. Mathar, Nov 03 2020

A085810 Number of three-choice paths along a corridor of height 5, starting from the lower side.

Original entry on oeis.org

1, 2, 5, 13, 35, 96, 266, 741, 2070, 5791, 16213, 45409, 127206, 356384, 998509, 2797678, 7838801, 21963661, 61540563, 172432468, 483144522, 1353740121, 3793094450, 10628012915, 29779028189, 83438979561, 233790820762, 655067316176, 1835457822857, 5142838522138, 14409913303805
Offset: 1

Views

Author

Philippe Deléham, Jul 25 2003

Keywords

Comments

From Svjetlan Feretic, Jun 01 2013: (Start)
A three-choice path is a path whose steps lie in the set {(1,1), (1,0), (1,-1)}.
The paths under consideration "live" in a corridor like 0<=y<=5. Thus, the ordinate of a vertex of a path can take six values (0,1,2,3,4,5), but the height of the corridor is five.
a(1)=1 is the number of paths with zero steps, a(2)=2 is the number of paths with one step, a(3)=5 is the number of paths with two steps, ...
Narrower corridors produce A000012, A000079, A000129, A001519, A057960. An infinitely wide corridor would produce A005773.
(End)
Diagonal sums of A114164. - Paul Barry, Nov 15 2005
C(n):= a(n)*(-1)^n appears in the following formula for the nonpositive powers of rho*sigma, where rho:=2*cos(Pi/7) and sigma:=sin(3*Pi/7)/sin(Pi/7) = rho^2-1 are the ratios of the smaller and larger diagonal length to the side length in a regular 7-gon (heptagon). See the Steinbach reference where the basis <1,rho,sigma> is used in an extension of the rational field. (rho*sigma)^(-n) = C(n) + B(n)*rho + A(n)*sigma,n>=0, with B(n)= A181880(n-2)*(-1)^n, and A(n)= A116423(n+1)*(-1)^(n+1). For the nonnegative powers see A120757(n), |A122600(n-1)| and A181879(n), respectively. See also a comment under A052547.
a(n) is also the number of bi-wall directed polygons with n cells. (The definition of bi-wall directed polygons is given in the article on A122737.)

Crossrefs

Programs

  • Magma
    I:=[1,2,5]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-Self(n-3): n in [1..35]]; // Vincenzo Librandi, Sep 18 2015
    
  • Mathematica
    LinearRecurrence[{4,-3,-1}, {1,2,5}, 50] (* Roman Witula, Aug 09 2012 *)
    CoefficientList[Series[(1 - 2 x)/(1 - 4 x + 3 x^2 + x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 18 2015 *)
  • PARI
    x='x+O('x^30); Vec((1-2*x)/(1-4*x+3*x^2+x^3)) \\ G. C. Greubel, Apr 19 2018

Formula

a(n) = 4*a(n-1) - 3*a(n-2) - a(n-3).
From Paul Barry, Nov 15 2005: (Start)
G.f.: (1-2*x)/(1-4*x+3*x^2+x^3).
a(n) = Sum_{k=0..floor(n/2)} (Sum_{j=0..n-k} C(n-k, j)*C(j+k, 2k));
a(n) = Sum_{k=0..floor(n/2)} (Sum_{j=0..n-k} C(n-k, k+j)*C(k, k-j)*2^(n-2k-j));
a(n) = Sum_{k=0..floor(n/2)} (Sum_{j=0..n-2*k} C(n-j, n-2*k-j)*C(k, j)(-1)^j*2^(n-2*k-j)). (End)
a(n-1) = -B(n;-1) = (1/7)*((c(4)-c(1))*(1-c(1))^n + (c(1)-c(2))*(1-c(2))^n + (c(2)-c(4))*(1-c(4))^n), where a(-1):=0, c(j):=2*cos(2*Pi*j/7). Moreover, B(n;d), n in N, d in C, denotes the respective quasi-Fibonacci number defined in comments to A121449 or in Witula-Slota-Warzynski's paper (see also A077998, A006054, A052975, A094789, A121442). - Roman Witula, Aug 09 2012

Extensions

Name corrected and clarified, and offset 1 from Svjetlan Feretic, Jun 01 2013

A094789 Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 7 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = 1, s(2n+1) = 4.

Original entry on oeis.org

1, 4, 14, 47, 155, 507, 1652, 5373, 17460, 56714, 184183, 598091, 1942071, 6305992, 20475625, 66484244, 215873462, 700937471, 2275930827, 7389902771, 23994866364, 77910846021, 252974934692, 821404463698, 2667083556359
Offset: 1

Views

Author

Herbert Kociemba, Jun 11 2004

Keywords

Comments

In general, a(n) = (2/m)*Sum_{r=1..m-1} sin(r*j*Pi/m)*sin(r*k*Pi/m)*(2*cos(r*Pi/m))^(2n+1) counts (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < m and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = j, s(2n+1) = k.
With interpolated zeros (0,0,0,1,0,4,0,14,...) counts walks of length n between the start and fourth nodes on P_6. - Paul Barry, Jan 26 2005
The Hankel transforms of this sequence or of this sequence with the first term omitted give 1, -2, 1, 1, -2, 1, ... . - Wathek Chammam, Nov 16 2011
Diagonal of the square array A216201. - Philippe Deléham, Mar 28 2013

Crossrefs

Programs

  • Magma
    I:=[1,4,14]; [n le 3 select I[n] else 5*Self(n-1)-6*Self(n-2)+Self(n-3): n in [1..45]]; // Vincenzo Librandi, Nov 10 2014
    
  • Mathematica
    f[n_] := FullSimplify[ TrigToExp[(2/7)Sum[ Sin[Pi*k/7]Sin[4Pi*k/7](2Cos[Pi*k/7])^(2n + 1), {k, 1, 6}]]]; Table[ f[n], {n, 25}] (* Robert G. Wilson v, Jun 18 2004 *)
    LinearRecurrence[{5,-6,1}, {1,4,14}, 50] (* Roman Witula, Aug 09 2012 *)
    CoefficientList[Series[(x - 1) / (- 1 + 5 x - 6 x^2 + x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 10 2014 *)
  • PARI
    Vec(x*(x-1)/(-1 + 5*x - 6*x^2 + x^3) + O(x^40)) \\ Michel Marcus, Nov 10 2014

Formula

a(n) = (2/7)*Sum_{k = 1..6} sin(Pi*k/7)*sin(4*Pi*k/7)*(2*cos(Pi*k/7))^(2n + 1).
a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3).
G.f.: x*(x-1)/(-1 + 5*x - 6*x^2 + x^3). - Corrected by Vincenzo Librandi, Nov 10 2014
a(n) = 2^n*B(n; 1/2) = (1/7)*((c(1) - c(4))*(c(4))^(2n) + (c(2) - c(1))*(c(1))^(2n) + (c(4) - c(2))*(c(2))^(2n)), where c(j) := 2*cos(2*Pi*j/7). Here B(n; d), n in N, d in C denotes the respective quasi-Fibonacci number - see A121449 and Witula-Slota-Warzynski paper for details (see also A052975, A085810, A077998, A006054, A121442). - Roman Witula, Aug 09 2012
a(n+1) = A216201(n,n+2) = A216201(n,n+3). - Philippe Deléham, Mar 28 2013

A052534 Expansion of (1-x)*(1+x)/(1-2*x-x^2+x^3).

Original entry on oeis.org

1, 2, 4, 9, 20, 45, 101, 227, 510, 1146, 2575, 5786, 13001, 29213, 65641, 147494, 331416, 744685, 1673292, 3759853, 8448313, 18983187, 42654834, 95844542, 215360731, 483911170, 1087338529, 2443227497, 5489882353, 12335653674
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Pairwise sums of A006356. Cf. A033303, A077850. - Ralf Stephan, Jul 06 2003
Number of (3412, P)-avoiding involutions in S_{n+1}, where P={1342, 1423, 2314, 3142, 2431, 4132, 3241, 4213, 21543, 32154, 43215, 15432, 53241, 52431, 42315, 15342, 54321}. - Ralf Stephan, Jul 06 2003
Number of 31- and 22-avoiding words of length n on alphabet {1,2,3} which do not end in 3 (e.g., at n=3, we have 111, 112, 121, 132, 211, 212, 232, 321 and 332). See A028859, A001519. - Jon Perry, Aug 04 2003
Form the graph with matrix A=[1, 1, 1; 1, 0, 0; 1, 0, 1]. Then the sequence 1,1,2,4,... with g.f. (1-x-x^2)/(1-2x-x^2+x^3) counts closed walks of length n at the degree 3 vertex. - Paul Barry, Oct 02 2004
a(n) is the number of Motzkin (n+1)-sequences whose flatsteps all occur at level <=1 and whose height is <=2. For example, a(5)=45 counts all 51 Motzkin 6-paths except FUUFDD, UFUFDD, UUFDDF, UUFDFD, UUFFDD, UUUDDD (the first five violate the flatstep restriction and the last violates the height restriction). - David Callan, Dec 09 2004
From Paul Barry, Nov 03 2010: (Start)
The g.f. of 1,1,2,4,9,... can be expressed as 1/(1-x/(1-x/(1-x^2))) and as 1/(1-x-x^2/(1-x-x^2)).
The second expression shows the link to the Motzkin numbers. (End)
From Emeric Deutsch, Oct 31 2010: (Start)
a(n) is the number of compositions of n into odd summands when we have two kinds of 1's. Proof: the g.f. of the set S={1,1',3,5,7,...} is g=2x+x^3/(1-x^2) and the g.f. of finite sequences of elements of S is 1/(1-g). Example: a(4)=20 because we have 1+3, 1'+3, 3+1, 3+1', and 2^4=16 of sums x+y+z+u, where x,y,z,u are taken from {1,1'}.
(End)
a(n-1) is the top left entry of the n-th power of any of the six 3 X 3 matrices [1, 1, 0; 1, 1, 1; 0, 1, 0] or [1, 1, 1; 0, 1, 1; 1, 1, 0] or [1, 0, 1; 1, 1, 1; 1, 1, 0] or [1, 1, 1; 1, 0, 1; 0, 1, 1] or [1, 0, 1; 0, 0, 1; 1, 1, 1] or [1, 1, 0; 1, 0, 1; 1, 1, 1]. - R. J. Mathar, Feb 03 2014

Examples

			G.f. = 1 + 2*x + 4*x^2 + 9*x^3 + 20*x^4 + 45*x^5 + 101*x^6 + 227*x^7 + 510*x^8 + ... - _Michael Somos_, Dec 12 2023
		

Crossrefs

Programs

  • GAP
    a:=[1,2,4];; for n in [4..40] do a[n]:=2*a[n-1]+a[n-2]-a[n-3]; od; a; # G. C. Greubel, May 09 2019
  • Magma
    [n le 3 select 2^(n-1) else 2*Self(n-1)+Self(n-2)-Self(n-3): n in [1..40]]; // Vincenzo Librandi, Mar 17 2015
    
  • Maple
    spec := [S,{S=Sequence(Union(Z,Prod(Z,Sequence(Prod(Z,Z)))))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    LinearRecurrence[{2,1,-1},{1,2,4},40] (* Roman Witula, Aug 07 2012 *)
    CoefficientList[Series[(1-x^2)/(1-2x-x^2+x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 17 2015 *)
    a[ n_] := {0, 1, 0} . MatrixPower[{{1, 1, 1}, {1, 1, 0}, {1, 0, 0}}, n+1] . {0, 1, 0}; (* Michael Somos, Dec 12 2023 *)
  • Maxima
    h(n):=if n=0 then 1 else sum(sum(binomial(k,j)*binomial(j,n-3*k+2*j)*2^(3*k-n-j)*(-1)^(k-j),j,0,k),k,1,n); a(n):=if n<2 then h(n) else h(n)-h(n-2); /* Vladimir Kruchinin, Sep 09 2010 */
    
  • PARI
    my(x='x+O('x^40)); Vec((1-x^2)/(1-2*x-x^2+x^3)) \\ G. C. Greubel, May 09 2019
    
  • PARI
    {a(n) = [0, 1, 0] * [1, 1, 1; 1, 1, 0; 1, 0, 0]^(n+1) * [0, 1, 0]~}; /* Michael Somos, Dec 12 2023 */
    
  • SageMath
    ((1-x^2)/(1-2*x-x^2+x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 09 2019
    

Formula

G.f.: (1 - x^2)/(1 - 2*x - x^2 + x^3).
a(n) = 2*a(n-1) + a(n-2) - a(n-3), with a(0)=1, a(1)=2, a(2)=4.
a(n) = Sum_{alpha = RootOf(1-2*x-x^2+x^3)} (1/7)*(2 + alpha)*alpha^(-1-n).
a(n) = central term in the (n+1)-th power of the 3 X 3 matrix (shown in the example of A066170): [1 1 1 / 1 1 0 / 1 0 0]. E.g. a(6) = 101 since the central term in M^7 = 101. - Gary W. Adamson, Feb 01 2004
a(n) = A006054(n+2) - A006054(n). - Vladimir Kruchinin, Sep 09 2010
a(n) = A077998(n+2) - 2*A006054(n+2), which implies 7*a(n-2) = (2 + c(4) - 2*c(2))*(1 + c(1))^n + (2 + c(1) - 2*c(4))*(1 + c(2))^n + (2 + c(2) - 2*c(1))*(1 + c(4))^n, where c(j)=2*Cos(2Pi*j/7), a(-2)=a(-1)=1 since A077998 and A006054 are equal to the respective quasi-Fibonacci numbers. [Witula, Slota and Warzynski] - Roman Witula, Aug 07 2012
a(n+1) = A033303(n+1) - A033303(n). - Roman Witula, Sep 14 2012
a(n) = A006054(n+2)-A006054(n). - R. J. Mathar, Nov 23 2020
a(n) = A028495(-1-n) for all n in Z. - Michael Somos, Dec 12 2023

A052975 Expansion of (1-2*x)*(1-x)/(1-5*x+6*x^2-x^3).

Original entry on oeis.org

1, 2, 6, 19, 61, 197, 638, 2069, 6714, 21794, 70755, 229725, 745889, 2421850, 7863641, 25532994, 82904974, 269190547, 874055885, 2838041117, 9215060822, 29921113293, 97153242650, 315454594314, 1024274628963, 3325798821581, 10798800928441, 35063486341682
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 7 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 3, s(2n) = 3. - Herbert Kociemba, Jun 11 2004
Counts all paths of length (2*n), n>=0, starting at the initial node and ending on the nodes 1, 2, 3, 4 and 5 on the path graph P_6, see the second Maple program. - Johannes W. Meijer, May 29 2010

Crossrefs

Programs

  • Magma
    I:=[1,2,6]; [n le 3 select I[n] else 5*Self(n-1)-6*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 18 2015
    
  • Maple
    spec := [S,{S=Sequence(Prod(Union(Sequence(Prod(Sequence(Z),Z)),Sequence(Z)),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
    with(GraphTheory):G:=PathGraph(6): A:= AdjacencyMatrix(G): nmax:=25; n2:=2*nmax+1: for n from 0 to n2 do B(n):=A^n; a(n):=add(B(n)[k,1],k=1..5); od: seq(a(2*n),n=0..nmax); # Johannes W. Meijer, May 29 2010
  • Mathematica
    LinearRecurrence[{5,-6,1}, {1,2,6}, 50] (* Roman Witula, Aug 09 2012 *)
    CoefficientList[Series[(1 - 2 x) (1 - x)/(1 - 5 x + 6 x^2 - x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 18 2015 *)
  • PARI
    x='x+O('x^30); Vec((1-2*x)*(1-x)/(1-5*x+6*x^2-x^3)) \\ G. C. Greubel, Apr 19 2018

Formula

G.f.: (1-2*x)*(1-x)/(1-5*x+6*x^2-x^3).
a(n) = A028495(2*n). - Floor van Lamoen, Nov 02 2005
a(n) = Sum (1/7*(2-3*_alpha+_alpha^2)*_alpha^(-1-n), _alpha=RootOf(-1+5*_Z-6*_Z^2+_Z^3))
From Herbert Kociemba, Jun 11 2004: (Start)
a(n) = (2/7)*Sum_{r=1..6} sin(r*3*Pi/7)^2*(2*cos(r*Pi/7))^(2*n).
a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3). (End)
a(n) = 2^n*A(n;1/2) = (1/7)*(s(2)^2*c(4)^(2n) + s(4)^2*c(1)^(2n) + s(1)^2*c(2)^(2n)), where c(j):=2*cos(2Pi*j/7) and s(j):=2*sin(2*Pi*j/7). Here A(n;d), n in N, d in C denotes the respective quasi-Fibonacci number - see A121449 and Witula-Slota-Warzynski paper for details (see also A094789, A085810, A077998, A006054, A121442). I note that my and the respective Herbert Kociemba's formulas are "compatible". - Roman Witula, Aug 09 2012
a(n) = A005021(n)-3*A005021(n-1)+2*A005021(n-2). - R. J. Mathar, Feb 27 2019
Showing 1-10 of 31 results. Next