cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A006356 a(n) = 2*a(n-1) + a(n-2) - a(n-3) for n >= 3, starting with a(0) = 1, a(1) = 3, and a(2) = 6.

Original entry on oeis.org

1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, 4004, 8997, 20216, 45425, 102069, 229347, 515338, 1157954, 2601899, 5846414, 13136773, 29518061, 66326481, 149034250, 334876920, 752461609, 1690765888, 3799116465, 8536537209, 19181424995
Offset: 0

Views

Author

Keywords

Comments

Number of distributive lattices; also number of paths with n turns when light is reflected from 3 glass plates.
Let u(k), v(k), w(k) be defined by u(1) = 1, v(1) = 0, w(1) = 0 and u(k+1) = u(k) + v(k) + w(k), v(k+1) = u(k) + v(k), w(k+1) = u(k); then {u(n)} = 1, 1, 3, 6, 14, 31, ... (this sequence with an extra initial 1), {v(n)} = 0, 1, 2, 5, 11, 25, ... (A006054 with its initial 0 deleted) and {w(n)} = {u(n)} prefixed by an extra 0 = A077998 with an extra initial 0. - Benoit Cloitre, Apr 05 2002
Also u(k)^2 + v(k)^2 + w(k)^2 = u(2*k). - Gary W. Adamson, Dec 23 2003
The n-th term of the series is the number of paths for a ray of light that enters two layers of glass and then is reflected exactly n times before leaving the layers of glass.
One such path (with 2 plates of glass and 3 reflections) might be:
...\........./..................
--------------------------------
....\/\..../....................
--------------------------------
........\/......................
--------------------------------
For a k-glass sequence, say a(n,k), a(n,k) is always asymptotic to z(k)*w(k)^n where w(k) = (1/2)/cos(k*Pi/(2*k+1)) and it is conjectured that z(k) is the root 1 < x < 2 of a polynomial of degree Phi(2k+1)/2.
Number of ternary sequences of length n-1 such that every pair of consecutive digits has a sum less than 3. That is to say, the pairs (1,2), (2,1) and (2,2) do not appear. - George J. Schaeffer (gschaeff(AT)andrew.cmu.edu), Sep 07 2004
Number of weakly up-down sequences of length n using the digits {1,2,3}. When n=2 the sequences are 11, 12, 13, 22, 23, 33.
Form the graph with matrix A = [1, 1, 1; 1, 0, 0; 1, 0, 1]. Then A006356 counts walks of length n that start at the degree 4 vertex. - Paul Barry, Oct 02 2004
In general, the g.f. for p glass plates is: A(x) = F_{p-1}(-x)/F_p(x) where F_p(x) = Sum_{k=0..p} (-1)^[(k+1)/2]*C([(p+k)/2],k)*x^k. - Paul D. Hanna, Feb 06 2006
Equals the INVERT transform of (1, 2, 1, 1, 1, ...) equivalent to a(n) = a(n-1) + 2*a(n-2) + a(n-3) + a(n-4) + ... + 1. a(6) = 70 = (31 + 2*14 + 6 + 3 + 1 + 1). - Gary W. Adamson, Apr 27 2009
a(n) = the number of terms in the n-th iterate of sequence A179542 generated from the rules a(0) = 1, then (1->1,2,3), (2->1,2), (3->1).
Example: 3rd iterate = (1,2,3,1,2,1,1,2,3,1,2,1,2,3) = 14 terms composed of a frequency of (6, 5, 3): (1's, 2's, and 3's), where a(3) = 14, and the [6, 5, 3] = top row and left column of the 3rd power of M, the matrix generator [1,1,1; 1,1,0; 1,0,0] or a(2) = 6, A006054(4) = 5, and a(1) = 3.
Given the heptagon diagonal lengths with edge = 1: (a = 1, b = 1.80193773..., c = 2.24697...) = (1, 2*cos(Pi/7), (1 + 2*cos(2*Pi/7))), and using the diagonal product formulas in [Steinbach], we obtain: c^n = c*a(n-2) + b*A006054(n) + a(n-3) corresponding to the top row of M^(n-1), in the case M^3 = [6, 5, 3]. Example: c^4 = 25.491566... = 6*c + 5*b + 3 = 13.481... + 9.00968... + 3. - Gary W. Adamson, Jul 18 2010
Equals row sums of triangle A180262. - Gary W. Adamson, Aug 21 2010
The number of the one-sided n-step prudent walks, avoiding 2 or more consecutive east steps. - Shanzhen Gao, Apr 27 2011
a(n) = [A_{7,2}^(n+2)](1,1), where A{7,2} is the 3 X 3 unit-primitive matrix (see [Jeffery]) A_{7,2} = [0,0,1; 0,1,1; 1,1,1]. The denominator of the generating function for this sequence is also the characteristic polynomial of A_{7,2}. - L. Edson Jeffery, Dec 06 2011 [See the comments for sequence A306334. - Petros Hadjicostas, Nov 17 2019]
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [1, 1, 1; 1, 0, 0; 1, 0, 1] or of the 3 X 3 matrix [1, 1, 1; 1, 1, 0; 1, 0, 0]. - R. J. Mathar, Feb 03 2014
Successive sequences in this set (A006356, A006357, A006358, etc.) can be generated as follows: Begin with (1, 1, 1, 1, 1, 1, ...); and perform an operation with three steps to get the next sequence in the series. First, put alternate signs in the current series: With (1, 1, 1, ...) this equals (1, -1, 1, -1, ...); then take the inverse, getting (1, 1, 0, 0, 0, ...). Take the INVERT transform of the last step, getting (1, 2, 3, 5, 8, ...). Repeat the three steps using (1, 2, 3, 5, ...) --> (1, -2, 3, -5) --> (1, 2, 1, 1, 1, ...) --> (1, 3, 6, 14, 31, ...). Repeat the three steps using (1, 3, 6, 14, 31, ...), getting (1, 4, 10, 30, 85, ...) = A006357; and so on. - Gary W. Adamson, Aug 08 2019
Let W_n be the fence poset (a.k.a. zig-zag poset) of size n. Let [2] be a chain of size 2. Then a(n) is the number of antichains in the product poset W_n X [2]. See Berman- Koehler link. - Geoffrey Critzer, Jun 13 2023
a(n) is the number of double-dimer covers of the 2 X (n+1) square grid graph. See Musiker et al. link. - Nicholas Ovenhouse, Jan 07 2024
In general, the number of weakly up-down words of length n over an alphabet of size k is given by 4/(2*k+1)*|Sum_{j = 1..k} sin^2(2*j*Pi/(2*k+1))/(2*cos^2(2*j*Pi/(2*k+1)))^(n+1)| and the corresponding g. f. is given by V_(k-1)(-x/2)/W_k(x/2) if k is even and -W_(k-1)(-x/2) / V_k(x/2) if k is odd, where V_m(x) and W_m(x) are the Chebyshev polynomials of the third and fourth kind, respectively (see Paul D. Hanna's comment above and the Fried link). - Sela Fried, Apr 01 2025

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd edition, p. 291 (very briefly without generalizations).
  • J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
  • Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A038196 (3-wave sequence).
Cf. A179542. - Gary W. Adamson, Jul 18 2010
Cf. A180262. - Gary W. Adamson, Aug 21 2010

Programs

  • Haskell
    a006056 n = a006056_list !! n
    a006056_list = 1 : 3 : 6 : zipWith (+) (map (2 *) $ drop 2 a006056_list)
       (zipWith (-) (tail a006056_list) a006056_list)
    -- Reinhard Zumkeller, Oct 14 2011
    
  • Magma
    [ n eq 1 select 1 else n eq 2 select 3 else n eq 3 select 6 else 2*Self(n-1)+Self(n-2)- Self(n-3): n in [1..40] ] ; // Vincenzo Librandi, Aug 20 2011
    
  • Maple
    A006356:=-(-1-z+z**2)/(1-2*z-z**2+z**3); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{2,1,-1},{1,3,6},30] (* or *) CoefficientList[ Series[ (1+x-x^2)/(1-2x-x^2+x^3),{x,0,30}],x] (* Harvey P. Dale, Jul 06 2011 *)
    Table[If[n==0, a2=0; a1=1; a0=1, a3=a2; a2=a1; a1=a0; a0=2*a1+a2-a3], {n, 0, 29}] (* Jean-François Alcover, Apr 30 2013 *)
  • Maxima
    a(n):=sum(sum((sum(binomial(j,-3*k+2*j+i)*(-1)^(j-k)*binomial(k,j),j,0,k))*binomial(n+k-i-1,k-1),i,k,n),k,1,n); /* Vladimir Kruchinin, May 05 2011 */
    
  • PARI
    {a(n)=local(p=3);polcoeff(sum(k=0,p-1,(-1)^((k+1)\2)*binomial((p+k-1)\2,k)* (-x)^k)/sum(k=0,p,(-1)^((k+1)\2)*binomial((p+k)\2,k)*x^k+x*O(x^n)),n)} \\ Paul D. Hanna, Feb 06 2006
    
  • PARI
    Vec((1+x-x^2)/(1-2*x-x^2+x^3)+O(x^66)) \\ Joerg Arndt, Apr 30 2013
    
  • Python
    from math import comb
    def A006356(n): return sum(comb(j,a)*comb(k,j)*comb(n+k-i,k-1)*(-1 if j-k&1 else 1) for k in range(1,n+2) for i in range(k,n+2) for j in range(k+1) if (a:=-3*k+2*j+i)>=0) # Chai Wah Wu, Feb 19 2024

Formula

a(n) is asymptotic to z(3)*w(3)^n where w(3) = (1/2)/cos(3*Pi/7) and z(3) is the root 1 < X < 2 of P(3, X) = 1 - 14*X - 49*X^2 + 49*X^3. w(3) = 2.2469796.... z(3) = 1.220410935...
G.f.: (1 + x - x^2)/(1 - 2*x - x^2 + x^3). - Paul D. Hanna, Feb 06 2006
a(n) = a(n-1) + a(n-2) + A006054(n+1). - Gary W. Adamson, Jun 05 2008
a(n) = A006054(n+2) + A006054(n+1) - A006054(n). - R. J. Mathar, Apr 07 2011
a(n-1) = Sum_{k = 1..n} Sum_{i = k..n} Sum_{j = 0..k} binomial(j, -3*k+2*j+i) * (-1)^(j-k) * binomial(k, j) * binomial(n+k-i-1, k-1). - Vladimir Kruchinin, May 05 2011
Sum_{k=0..n} a(k) = a(n+1) - a(n-1) - 1. - Greg Dresden and Mina BH Arsanious, Aug 23 2023

Extensions

Recurrence, alternative description from Jacques Haubrich (jhaubrich(AT)freeler.nl)
Alternative definition added by Andrew Niedermaier, Nov 11 2008

A028495 Expansion of g.f. (1-x^2)/(1-x-2*x^2+x^3).

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 19, 33, 61, 108, 197, 352, 638, 1145, 2069, 3721, 6714, 12087, 21794, 39254, 70755, 127469, 229725, 413908, 745889, 1343980, 2421850, 4363921, 7863641, 14169633, 25532994, 46008619, 82904974, 149389218, 269190547, 485064009, 874055885
Offset: 0

Views

Author

Keywords

Comments

Form the graph with matrix A = [0,1,1; 1,0,0; 1,0,1] (P_3 with a loop at an extremity). Then A028495 counts closed walks of length n at the degree 3 vertex. - Paul Barry, Oct 02 2004
Equals INVERT transform of (1, 1, 0, 1, 0, 1, 0, 1, ...). - Gary W. Adamson, Apr 28 2009
From Johannes W. Meijer, May 29 2010: (Start)
a(n) is the number of ways White can force checkmate in exactly (n+1) moves, n>=0, ignoring the fifty-move and the triple repetition rules, in the following chess position: White Ka1, Ra8, Bc1, Nb8, pawns a6, a7, b2, c6, d2, f6 and h6; Black Kc8, pawns b3, c7, d3, f7 and h7. (After Noam D. Elkies, see link; diagram 5).
Counts all paths of length n, n>=0, starting at the initial node on the path graph P_6, see the second Maple program. (End)
a(n) is the number of length n-1 binary words such that each maximal block of 1's has odd length. a(4) = 6 because we have: 000, 001, 010, 100, 101, 111. - Geoffrey Critzer, Nov 17 2012
a(n) is the number of compositions of n where increments can only appear at every second position, starting with the second and third part, see example. Also, a(n) is the number of compositions of n where there is no fall between every second pair of parts, starting with the first and second part; see example. - Joerg Arndt, May 21 2013
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [1, 1, 0; 1, 0, 1; 0, 1, 0] or of the 3 X 3 matrix [1, 0, 1; 0, 0, 1; 1, 1, 0]. - R. J. Mathar, Feb 03 2014
Range of row n of the circular Pascal array of order 7. - Shaun V. Ault, Jun 05 2014
a(n) is the number of compositions of n into parts from {1,2,4,6,8,10,...}. Example: a(4)= 6 because we have 4, 22, 211, 121, 112, and 1111. - Emeric Deutsch, Aug 17 2016
In general, a(n,m) = (2^n/(m+1))*Sum_{r=1..m} (1-(-1)^r)*cos(Pi*r/(m+1))^n*(1+cos(Pi*r/(m+1))) gives the number of paths of length n starting at the initial node on the path graph P_m. Here we have m=6. - Herbert Kociemba, Sep 15 2020
a(n-1) is the number of triangular dcc-polyominoes having area n (see Baril et al. at page 11). - Stefano Spezia, Oct 14 2023
a(n) is the number of permutations p of [n] with p(j)Alois P. Heinz, Mar 29 2024

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 19*x^6 + 33*x^7 + 61*x^8 + ...
From _Joerg Arndt_, May 21 2013: (Start)
There are a(6)=19 compositions of 6 where increments can only appear at every second position:
  01:  [ 1 1 1 1 1 1 ]
  02:  [ 1 1 1 1 2 ]
  03:  [ 1 1 2 1 1 ]
  04:  [ 1 1 2 2 ]
  05:  [ 1 1 3 1 ]
  06:  [ 1 1 4 ]
  07:  [ 2 1 1 1 1 ]
  08:  [ 2 1 2 1 ]
  09:  [ 2 1 3 ]
  10:  [ 2 2 1 1 ]
  11:  [ 2 2 2 ]
  12:  [ 3 1 1 1 ]
  13:  [ 3 1 2 ]
  14:  [ 3 2 1 ]
  15:  [ 3 3 ]
  16:  [ 4 1 1 ]
  17:  [ 4 2 ]
  18:  [ 5 1 ]
  19:  [ 6 ]
There are a(6)=19 compositions of 6 where there is no fall between every second pair of parts, starting with the first and second part:
  01:  [ 1 1 1 1 1 1 ]
  02:  [ 1 1 1 1 2 ]
  03:  [ 1 1 1 2 1 ]
  04:  [ 1 1 1 3 ]
  05:  [ 1 1 2 2 ]
  06:  [ 1 1 4 ]
  07:  [ 1 2 1 1 1 ]
  08:  [ 1 2 1 2 ]
  09:  [ 1 2 3 ]
  10:  [ 1 3 1 1 ]
  11:  [ 1 3 2 ]
  12:  [ 1 4 1 ]
  13:  [ 1 5 ]
  14:  [ 2 2 1 1 ]
  15:  [ 2 2 2 ]
  16:  [ 2 3 1 ]
  17:  [ 2 4 ]
  18:  [ 3 3 ]
  19:  [ 6 ]
(End)
19 = (1, 0, 1, 0, 1, 1) dot (1, 1, 2, 3, 6, 10) = (1 + 0 + 2 + 0 + 6 + 10). Cf. comment of Apr 28 2009. - _Gary W. Adamson_, Aug 10 2016
		

Crossrefs

Programs

  • Maple
    spec := [S,{S=Sequence(Union(Prod(Sequence(Prod(Z,Z)),Z,Z),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
    with(GraphTheory): P:=6: G:= PathGraph(P): A:=AdjacencyMatrix(G): nmax:=34; for n from 0 to nmax do B(n):=A^n; a(n):=add(B(n)[1,k], k=1..P) od: seq(a(n), n=0..nmax); # Johannes W. Meijer, May 29 2010
    a := (-1)^(3/7) - (-1)^(4/7):
    b := (-1)^(5/7) - (-1)^(2/7):
    c := (-1)^(1/7) - (-1)^(6/7):
    f := n -> (a^n * (2 + a) + b^n * (2 + b) + c^n * (2 + c))/7:
    seq(simplify(f(n)), n=0..36); # Peter Luschny, Sep 16 2020
  • Mathematica
    LinearRecurrence[{1, 2, -1}, {1, 1, 2}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *)
    CoefficientList[Series[(1-x^2)/(1-x-2x^2+x^3),{x,0,40}],x] (* Harvey P. Dale, Dec 23 2018 *)
    a[n_,m_]:= 2^(n+1)/(m+1) Module[{x=(Pi r)/(m+1)},Sum[Cos[x]^n (1+Cos[x]),{r,1,m,2}]]
    Table[a[n,6],{n,0,40}]//Round (* Herbert Kociemba, Sep 15 2020 *) (* Herbert Kociemba, Sep 14 2020 *)
  • PARI
    {a(n) = if( n<0, n = -1-n; polcoeff( (1 - x^2) / (1 - 2*x - x^2 + x^3) + x * O(x^n), n), polcoeff( (1 - x^2) / (1 - x - 2*x^2 + x^3) + x * O(x^n), n))} /* Michael Somos, Apr 05 2012 */
    
  • PARI
    a(n)=([0,1,0;0,0,1;-1,2,1]^n*[1;1;2])[1,1] \\ Charles R Greathouse IV, Aug 25 2016

Formula

Recurrence: {a(0)=1, a(1)=1, a(2)=2, a(n)-2*a(n+1)-a(n+2)+a(n+3)=0}.
a(n) = Sum_(1/7*(1+2*_alpha)*_alpha^(-1-n), _alpha=RootOf(_Z^3-2*_Z^2-_Z+1)).
a(n) = A094718(6, n). - N. J. A. Sloane, Jun 12 2004
a(n) = a(n-1) + Sum_{k=1..floor(n/2)} a(n-2*k). - Floor van Lamoen, Oct 29 2005
a(n) = 5*a(n-2) - 6*a(n-4) + a(n-6). - Floor van Lamoen, Nov 02 2005
a(n) = A006053(n+2) - A006053(n). - R. J. Mathar, Nov 16 2007
a(2*n) = A052975(n), a(2*n+1) = A060557(n). - Johannes W. Meijer, May 29 2010
G.f.: 1 / (1 - x / (1 - x / (1 + x / (1 + x / (1 - x))))). - Michael Somos, Apr 05 2012
a(-1 - n) = A052534(n). - Michael Somos, Apr 05 2012
a(n) = (2^n/7)*Sum_{r=1..6} (1-(-1)^r)*cos(Pi*r/7)^n*(1+cos(Pi*r/7)). - Herbert Kociemba, Sep 15 2020

Extensions

More terms from James Sellers, Jun 05 2000

A033303 Expansion of (1 + x)/(1 - 2*x - x^2 + x^3).

Original entry on oeis.org

1, 3, 7, 16, 36, 81, 182, 409, 919, 2065, 4640, 10426, 23427, 52640, 118281, 265775, 597191, 1341876, 3015168, 6775021, 15223334, 34206521, 76861355, 172705897, 388066628, 871977798, 1959316327
Offset: 0

Views

Author

Keywords

Comments

Also the number of one-sided n-step prudent walks that avoid 3 or more consecutive east steps. - Shanzhen Gao, Apr 27 2011
Equivalently, number of ternary strings of length n with subwords (0,0) and (1,2) not allowed. - Olivier Gérard, Aug 28 2012
First differences are in A052534.
a(n) is the number of vertices of the Minkowski sum of n simplices with vertices e_(i+1), e_(i+2), e_(i+3) for i=0,...,n-1, where e_i is a standard basis vector. - Alejandro H. Morales, Oct 05 2022

References

  • R. P. Stanley, Enumerative Combinatorics I, p. 244.

Programs

  • Mathematica
    CoefficientList[Series[(1 + x)/(1 - 2*x - x^2 + x^3), {x, 0, 100}], x] (* Vincenzo Librandi, Oct 20 2012 *)
    LinearRecurrence[{2,1,-1},{1,3,7},40] (* Harvey P. Dale, Oct 31 2013 *)
  • Maxima
    h(n):=sum(sum(binomial(k,j)*binomial(j,n-3*k+2*j)*2^(3*k-n-j)*(-1)^(k-j),j,0,k),k,1,n); a(n):=if n=0 then 1 else if n=2 then h(n) else h(n)+h(n-1); /* Vladimir Kruchinin, Sep 09 2010 */
    
  • PARI
    a(n)=([0,1,0; 0,0,1; -1,1,2]^n*[1;3;7])[1,1] \\ Charles R Greathouse IV, Feb 19 2017

Formula

a(0)=1, a(1)=h(n), and a(n) = h(n) + h(n-1) for n >= 2, where h(n) = Sum_{k=1..n} Sum_{j=0..k} binomial(k, j) * binomial(j, n-3*k+2*j) * 2^(3*k-n-j) * (-1)^(k-j). - Vladimir Kruchinin, Sep 09 2010
a(0)=1, a(1)=3, a(2)=7, a(n) = 2*a(n-1) + a(n-2) - a(n-3). - Harvey P. Dale, Oct 31 2013
a(n) = A006054(n+1)+A006054(n+2). - R. J. Mathar, Jul 08 2022

A060098 Triangle of partial sums of column sequences of triangle A060086, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 8, 4, 1, 1, 9, 16, 13, 5, 1, 1, 12, 30, 32, 19, 6, 1, 1, 16, 50, 71, 55, 26, 7, 1, 1, 20, 80, 140, 140, 86, 34, 8, 1, 1, 25, 120, 259, 316, 246, 126, 43, 9, 1, 1, 30, 175, 448, 660, 622, 399, 176, 53, 10, 1
Offset: 0

Views

Author

Wolfdieter Lang, Apr 06 2001

Keywords

Comments

In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Riordan-group. The g.f. for the row polynomials p(n,x) = Sum_{m=0..n} a(n,m)*x^m is (1/(1-x*z/((1-z^2)*(1-z))))/(1-z).
Row sums give A052534. Column sequences (without leading zeros) give A000012 (powers of 1), A002620(n+1), A002624, A060099-A060101 for m=0..5.
The bisections of the column sequences give triangles A060102 and A060556.
Riordan array (1/(1-x), x/((1-x)*(1-x^2))). - Paul Barry, Mar 28 2011

Examples

			p(3,x) = 1 + 4*x + 3*x^2 + x^3.
Triangle begins:
  1;
  1,  1;
  1,  2,  1;
  1,  4,  3,  1;
  1,  6,  8,  4,  1;
  1,  9, 16, 13,  5,  1;
  1, 12, 30, 32, 19,  6,  1;
  1, 16, 50, 71, 55, 26,  7,  1;
  ...
		

Crossrefs

Programs

  • Maple
    A060098 := proc(n,k) add( binomial(n-2*i,n-2*i-k)*binomial(k+i-1,i), i=0..floor(n/2)) ; end proc:
    seq(seq(A060098(n,k), k=0..n), n=0..12); # R. J. Mathar, Mar 29 2011
    # Recurrence after Philippe Deléham:
    T := proc(n, k) option remember;
    if k < 0 or k > n then 0 elif k = 0 or n = k then 1 else
    T(n-1, k) + T(n-1, k-1) + T(n-2, k) - T(n-3, k) fi end:
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, May 07 2023
  • Mathematica
    t[n_, k_] := Sum[ Binomial[n-2*j, n-2*j-k]*Binomial[k+j-1, j], {j, 0, n/2}]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 21 2013 *)

Formula

G.f. for column m >= 0: ((x/((1-x^2)*(1-x)))^m)/(1-x) = x^m/((1+x)^m*(1-x)^(2*m+1)).
Number triangle T(n,k) = Sum_{i=0..floor(n/2)} C(n-2*i,n-2*i-k)*C(k+i-1,i). - Paul Barry, Mar 28 2011
From Philippe Deléham, Apr 20 2023: (Start)
T(n, k) = 0 if k < 0 or if k > n; T(n, k) = 1 if k = 0 or k = n; otherwise:
T(n, k) = T(n-1, k) + T(n-1, k-1) + T(n-2, k) - T(n-3, k).
T(n, k) = A188316(n, k) + A188316(n-1, k). (End)

A187069 Let i be in {1,2,3}, let r >= 0 be an integer and n=2*r+i-1. Then a(n)=a(2*r+i-1) gives the quantity of H_(7,2,0) tiles in a subdivided H_(7,i,r) tile after linear scaling by the factor x^r, where x=sqrt((2*cos(Pi/7))^2-1).

Original entry on oeis.org

0, 1, 0, 1, 1, 2, 2, 4, 5, 9, 11, 20, 25, 45, 56, 101, 126, 227, 283, 510, 636, 1146, 1429, 2575, 3211, 5786, 7215, 13001, 16212, 29213, 36428, 65641, 81853, 147494, 183922, 331416, 413269, 744685, 928607, 1673292, 2086561, 3759853, 4688460, 8448313, 10534874
Offset: 0

Views

Author

L. Edson Jeffery, Mar 06 2011

Keywords

Comments

See A187070 for supporting theory. Define the matrix
U_2 = (0 0 1)
(0 1 1)
(1 1 1).
Let r>=0, and let B_r be the r-th "block" defined by B_r={a(2*r),a(2*r+1),a(2*r+2)}. Note that B_r-2*B_(r-1)-B_(r-2)+B_(r-3)={0,0,0}. Let n=2*r+i-1 and M=(m_(i,j))=(U_2)^r. Then B_r corresponds component-wise to the second column of M, and a(n)=a(2*r+i-1)=m_(i,2) gives the quantity of H_(7,2,0) tiles that should appear in a subdivided H_(7,i,r) tile.
Since a(2*r+2)=a(2*(r+1)) for all r, this sequence arises by concatenation of second-column entries m_(1,2) and m_(2,2) from successive matrices M=(U_2)^r.

Examples

			Suppose r=3.
Then B_r = B_3 = {a(2*r),a(2*r+1),a(2*r+2)} = {a(6),a(7),a(8)} = {2,4,5}, corresponding to the entries in the second column of
  M = (U_2)^3 = (1 2 3)
                (2 4 5)
                (3 5 6).
Suppose i=2. Setting n=2*r+i-1, then a(n) = a(2*r+i-1) = a(6+2-1) = a(7) = m_(2,2) = 4. Hence a subdivided H_(7,2,3) tile should contain a(7) = m_(2,2) = 4 H_(7,2,0) tiles.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x*(1 - x^2 + x^3 - x^4)/(1 - 2*x^2 - x^4 + x^6), {x, 0, 50}], x] (* G. C. Greubel, Oct 20 2017 *)
    LinearRecurrence[{0,2,0,1,0,-1},{0,1,0,1,1,2},50] (* Harvey P. Dale, Dec 16 2017 *)
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(x*(1-x^2+x^3-x^4)/(1-2*x^2-x^4+x^6))) \\ G. C. Greubel, Oct 20 2017

Formula

Recurrence: a(n) = 2*a(n-2) + a(n-4) - a(n-6).
G.f.: x*(1-x^2+x^3-x^4)/(1-2*x^2-x^4+x^6).
Closed-form: a(n) = (1/14)*[[X_1+Y_1*(-1)^(n-1)]*[(w_2)^2-(w_3)^2]*(w_1)^(n-1)+[X_2+Y_2*(-1)^(n-1)]*[(w_3)^2-(w_1)^2]*(w_2)^(n-1)+[X_3+Y_3*(-1)^(n-1)]*[(w_1)^2-(w_2)^2]*(w_3)^(n-1)], where w_k = sqrt[(2cos(k*Pi/7))^2-1], X_k = (w_k)^4-(w_k)^2+w_k-1 and Y_k = (w_k)^4+(w_k)^2-w_k-1, k=1,2,3.
a(2*n) = A006054(n), a(2*n+3) = A052534(n).

A077850 Expansion of (1-x)^(-1)/(1 - 2*x - x^2 + x^3).

Original entry on oeis.org

1, 3, 8, 19, 44, 100, 226, 509, 1145, 2574, 5785, 13000, 29212, 65640, 147493, 331415, 744684, 1673291, 3759852, 8448312, 18983186, 42654833, 95844541, 215360730, 483911169, 1087338528, 2443227496, 5489882352, 12335653673, 27717962203, 62281695728, 139945699987
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

a(n) = A052534(n+1) - 1.

Crossrefs

Cf. A188106. See also A189247. - L. Edson Jeffery, Apr 22 2011

Programs

  • Mathematica
    CoefficientList[Series[(1-x)^(-1)/(1-2x-x^2+x^3),{x,0,40}],x] (* or *) LinearRecurrence[{3,-1,-2,1},{1,3,8,19},40] (* Harvey P. Dale, Jan 22 2013 *)
  • PARI
    Vec(1/(1-x)/(1-2*x-x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

a(n) = sum(k=0..n+2, A006054(k)). - Philippe Deléham, Sep 07 2006
a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3) + a(n-4), n>3. Also a(n)=Sum_{k=0..n} A188106(n,k), n=0,1,2,..., giving partial sums of first convolution of A006054 with itself. - L. Edson Jeffery, Apr 22 2011

A078056 Expansion of (1-x)/(1+2*x-x^2-x^3).

Original entry on oeis.org

1, -3, 7, -16, 36, -81, 182, -409, 919, -2065, 4640, -10426, 23427, -52640, 118281, -265775, 597191, -1341876, 3015168, -6775021, 15223334, -34206521, 76861355, -172705897, 388066628, -871977798, 1959316327, -4402543824, 9892426177, -22228079851, 49946042055, -112227737784
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

Absolute values of pairwise sums are in A052534.

Crossrefs

Cf. A052534.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!((1-x)/(1+2*x-x^2-x^3))); // Vincenzo Librandi, Feb 21 2020
  • Mathematica
    CoefficientList[Series[(1-x)/(1+2*x-x^2-x^3),{x,0,60}],x] (* Harvey P. Dale, Feb 20 2020 *)
  • PARI
    Vec((1-x)/(1+2*x-x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
    

Formula

G.f.: (1-x)/(1+2*x-x^2-x^3).
a(n) = -2*a(n-1) + a(n-2) + a(n-3). - Wesley Ivan Hurt, Dec 29 2023
a(n) = (-1)^n*(A106805(n)+A106805(n+1)). -R. J. Mathar, Mar 19 2025

A052662 E.g.f. (1-x^2)/(1-2x-x^2+x^3).

Original entry on oeis.org

1, 2, 8, 54, 480, 5400, 72720, 1144080, 20563200, 415860480, 9344160000, 230958604800, 6227499801600, 181909958630400, 5722470212659200, 192874123233792000, 6934147333521408000, 264875092391669760000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Maple
    spec := [S,{S=Sequence(Union(Z,Prod(Z,Sequence(Prod(Z,Z)))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{nn=20},CoefficientList[Series[(1-x^2)/(1-2x-x^2+x^3),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jan 29 2023 *)

Formula

E.g.f.: -(-1+x^2)/(x^3-x^2-2*x+1)
Recurrence: {a(0)=1, a(1)=2, a(2)=8, (n^3+6*n^2+11*n+6)*a(n)+(-n^2-5*n-6)*a(n+1)+(-2*n-6)*a(n+2)+a(n+3)=0}
Sum(1/7*(2+_alpha)*_alpha^(-1-n), _alpha=RootOf(_Z^3-_Z^2-2*_Z+1))*n!
a(n) = n!*A052534(n). - R. J. Mathar, Nov 27 2011

A109110 a(n) = 2a(n-1) + a(n-2) - a(n-3); a(0)=4, a(1)=9, a(2)=20.

Original entry on oeis.org

4, 9, 20, 45, 101, 227, 510, 1146, 2575, 5786, 13001, 29213, 65641, 147494, 331416, 744685, 1673292, 3759853, 8448313, 18983187, 42654834, 95844542, 215360731, 483911170, 1087338529, 2443227497, 5489882353, 12335653674, 27717962204
Offset: 0

Views

Author

Emeric Deutsch, Jun 19 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (pp. 286, 288, K{S(n)})

Programs

  • Maple
    a[0]:=4:a[1]:=9:a[2]:=20: for n from 3 to 32 do a[n]:=2*a[n-1]+a[n-2]-a[n-3] od: seq(a[n],n=0..32);
  • Mathematica
    LinearRecurrence[{2,1,-1},{4,9,20},30] (* Harvey P. Dale, Apr 27 2025 *)

Formula

G.f.: (4 + z - 2z^2)/(1 - 2z - z^2 + z^3).
a(n) = A052534(n+2). - R. J. Mathar, Feb 03 2014

A220836 Triangle read by rows giving coefficients of Zhang-Zhang polynomial for benzenoidal system S(n).

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 1, 6, 13, 9, 1, 8, 26, 38, 20, 1, 10, 43, 96, 106, 45, 1, 12, 64, 190, 321, 284, 101, 1, 14, 89, 328, 742, 1006, 742, 227, 1, 16, 118, 518, 1460, 2660, 3006, 1900, 510
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 2012

Keywords

Examples

			Triangle begins:
1
1 2
1 4 4
1 6 13 9
1 8 26 38 20
1 10 43 96 106 45
1 12 64 190 321 284 101
1 14 89 328 742 1006 742 227
1 16 118 518 1460 2660 3006 1900 510
...
		

Crossrefs

Right hand diagonal is A052534.

Formula

Chou and Witek give a g.f.
Showing 1-10 of 10 results.