cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A001333 Pell-Lucas numbers: numerators of continued fraction convergents to sqrt(2).

Original entry on oeis.org

1, 1, 3, 7, 17, 41, 99, 239, 577, 1393, 3363, 8119, 19601, 47321, 114243, 275807, 665857, 1607521, 3880899, 9369319, 22619537, 54608393, 131836323, 318281039, 768398401, 1855077841, 4478554083, 10812186007, 26102926097, 63018038201, 152139002499, 367296043199
Offset: 0

Views

Author

Keywords

Comments

Number of n-step non-selfintersecting paths starting at (0,0) with steps of types (1,0), (-1,0) or (0,1) [Stanley].
Number of n steps one-sided prudent walks with east, west and north steps. - Shanzhen Gao, Apr 26 2011
Number of ternary strings of length n-1 with subwords (0,2) and (2,0) not allowed. - Olivier Gérard, Aug 28 2012
Number of symmetric 2n X 2 or (2n-1) X 2 crossword puzzle grids: all white squares are edge connected; at least 1 white square on every edge of grid; 180-degree rotational symmetry. - Erich Friedman
a(n+1) is the number of ways to put molecules on a 2 X n ladder lattice so that the molecules do not touch each other.
In other words, a(n+1) is the number of independent vertex sets and vertex covers in the n-ladder graph P_2 X P_n. - Eric W. Weisstein, Apr 04 2017
Number of (n-1) X 2 binary arrays with a path of adjacent 1's from top row to bottom row, see A359576. - R. H. Hardin, Mar 16 2002
a(2*n+1) with b(2*n+1) := A000129(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation a^2 - 2*b^2 = -1.
a(2*n) with b(2*n) := A000129(2*n), n >= 1, give all (positive integer) solutions to Pell equation a^2 - 2*b^2 = +1 (see Emerson reference).
Bisection: a(2*n) = T(n,3) = A001541(n), n >= 0 and a(2*n+1) = S(2*n,2*sqrt(2)) = A002315(n), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. See A053120, resp. A049310.
Binomial transform of A077957. - Paul Barry, Feb 25 2003
For n > 0, the number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 4 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 2, s(n) = 2. - Herbert Kociemba, Jun 02 2004
For n > 1, a(n) corresponds to the longer side of a near right-angled isosceles triangle, one of the equal sides being A000129(n). - Lekraj Beedassy, Aug 06 2004
Exponents of terms in the series F(x,1), where F is determined by the equation F(x,y) = xy + F(x^2*y,x). - Jonathan Sondow, Dec 18 2004
Number of n-words from the alphabet A={0,1,2} which two neighbors differ by at most 1. - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Aug 30 2006
Consider the mapping f(a/b) = (a + 2b)/(a + b). Taking a = b = 1 to start with and carrying out this mapping repeatedly on each new (reduced) rational number gives the following sequence 1/1, 3/2, 7/5, 17/12, 41/29, ... converging to 2^(1/2). Sequence contains the numerators. - Amarnath Murthy, Mar 22 2003 [Amended by Paul E. Black (paul.black(AT)nist.gov), Dec 18 2006]
Odd-indexed prime numerators are prime RMS numbers (A140480) and also NSW primes (A088165). - Ctibor O. Zizka, Aug 13 2008
The intermediate convergents to 2^(1/2) begin with 4/3, 10/7, 24/17, 58/41; essentially, numerators=A052542 and denominators here. - Clark Kimberling, Aug 26 2008
Equals right border of triangle A143966. Starting (1, 3, 7, ...) equals INVERT transform of (1, 2, 2, 2, ...) and row sums of triangle A143966. - Gary W. Adamson, Sep 06 2008
Inverse binomial transform of A006012; Hankel transform is := [1, 2, 0, 0, 0, 0, 0, 0, 0, ...]. - Philippe Deléham, Dec 04 2008
From Charlie Marion, Jan 07 2009: (Start)
In general, denominators, a(k,n) and numerators, b(k,n), of continued fraction convergents to sqrt((k+1)/k) may be found as follows:
let a(k,0) = 1, a(k,1) = 2k; for n>0, a(k,2n) = 2*a(k,2n-1) + a(k,2n-2) and a(k,2n+1) = (2k)*a(k,2n) + a(k,2n-1);
let b(k,0) = 1, b(k,1) = 2k+1; for n>0, b(k,2n) = 2*b(k,2n-1) + b(k,2n-2) and b(k,2n+1) = (2k)*b(k,2n) + b(k,2n-1).
For example, the convergents to sqrt(2/1) start 1/1, 3/2, 7/5, 17/12, 41/29.
In general, if a(k,n) and b(k,n) are the denominators and numerators, respectively, of continued fraction convergents to sqrt((k+1)/k) as defined above, then
k*a(k,2n)^2 - a(k,2n-1)*a(k,2n+1) = k = k*a(k,2n-2)*a(k,2n) - a(k,2n-1)^2 and
b(k,2n-1)*b(k,2n+1) - k*b(k,2n)^2 = k+1 = b(k,2n-1)^2 - k*b(k,2n-2)*b(k,2n);
for example, if k=1 and n=3, then b(1,n)=a(n+1) and
1*a(1,6)^2 - a(1,5)*a(1,7) = 1*169^2 - 70*408 = 1;
1*a(1,4)*a(1,6) - a(1,5)^2 = 1*29*169 - 70^2 = 1;
b(1,5)*b(1,7) - 1*b(1,6)^2 = 99*577 - 1*239^2 = 2;
b(1,5)^2 - 1*b(1,4)*b(1,6) = 99^2 - 1*41*239 = 2.
(End)
This sequence occurs in the lower bound of the order of the set of equivalent resistances of n equal resistors combined in series and in parallel (A048211). - Sameen Ahmed Khan, Jun 28 2010
Let M = a triangle with the Fibonacci series in each column, but the leftmost column is shifted upwards one row. A001333 = lim_{n->infinity} M^n, the left-shifted vector considered as a sequence. - Gary W. Adamson, Jul 27 2010
a(n) is the number of compositions of n when there are 1 type of 1 and 2 types of other natural numbers. - Milan Janjic, Aug 13 2010
Equals the INVERTi transform of A055099. - Gary W. Adamson, Aug 14 2010
From L. Edson Jeffery, Apr 04 2011: (Start)
Let U be the unit-primitive matrix (see [Jeffery])
U = U_(8,2) = (0 0 1 0)
(0 1 0 1)
(1 0 2 0)
(0 2 0 1).
Then a(n) = (1/4)*Trace(U^n). (See also A084130, A006012.)
(End)
For n >= 1, row sums of triangle
m/k.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1.....2
.2..|..1.....2.....4
.3..|..1.....4.....4.....8
.4..|..1.....4....12.....8....16
.5..|..1.....6....12....32....16....32
.6..|..1.....6....24....32....80....32....64
.7..|..1.....8....24....80....80...192....64...128
which is the triangle for numbers 2^k*C(m,k) with duplicated diagonals. - Vladimir Shevelev, Apr 12 2012
a(n) is also the number of ways to place k non-attacking wazirs on a 2 X n board, summed over all k >= 0 (a wazir is a leaper [0,1]). - Vaclav Kotesovec, May 08 2012
The sequences a(n) and b(n) := A000129(n) are entries of powers of the special case of the Brahmagupta Matrix - for details see Suryanarayan's paper. Further, as Suryanarayan remark, if we set A = 2*(a(n) + b(n))*b(n), B = a(n)*(a(n) + 2*b(n)), C = a(n)^2 + 2*a(n)*b(n) + 2*b(n)^2 we obtain integral solutions of the Pythagorean relation A^2 + B^2 = C^2, where A and B are consecutive integers. - Roman Witula, Jul 28 2012
Pisano period lengths: 1, 1, 8, 4, 12, 8, 6, 4, 24, 12, 24, 8, 28, 6, 24, 8, 16, 24, 40, 12, .... - R. J. Mathar, Aug 10 2012
This sequence and A000129 give the diagonal numbers described by Theon of Smyrna. - Sture Sjöstedt, Oct 20 2012
a(n) is the top left entry of the n-th power of any of the following six 3 X 3 binary matrices: [1, 1, 1; 1, 1, 1; 1, 0, 0] or [1, 1, 1; 1, 1, 0; 1, 1, 0] or [1, 1, 1; 1, 0, 1; 1, 1, 0] or [1, 1, 1; 1, 1, 0; 1, 0, 1] or [1, 1, 1; 1, 0, 1; 1, 0, 1] or [1, 1, 1; 1, 0, 0; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
If p is prime, a(p) == 1 (mod p) (compare with similar comment for A000032). - Creighton Dement, Oct 11 2005, modified by Davide Colazingari, Jun 26 2016
a(n) = A000129(n) + A000129(n-1), where A000129(n) is the n-th Pell Number; e.g., a(6) = 99 = A000129(6) + A000129(5) = 70 + 29. Hence the sequence of fractions has the form 1 + A000129(n-1)/A000129(n), and the ratio A000129(n-1)/A000129(n)converges to sqrt(2) - 1. - Gregory L. Simay, Nov 30 2018
For n > 0, a(n+1) is the length of tau^n(1) where tau is the morphism: 1 -> 101, 0 -> 1. See Song and Wu. - Michel Marcus, Jul 21 2020
For n > 0, a(n) is the number of nonisomorphic quasitrivial semigroups with n elements, see Devillet, Marichal, Teheux. A292932 is the number of labeled quasitrivial semigroups. - Peter Jipsen, Mar 28 2021
a(n) is the permanent of the n X n tridiagonal matrix defined in A332602. - Stefano Spezia, Apr 12 2022
From Greg Dresden, May 08 2023: (Start)
For n >= 2, 4*a(n) is the number of ways to tile this T-shaped figure of length n-1 with two colors of squares and one color of domino; shown here is the figure of length 5 (corresponding to n=6), and it has 4*a(6) = 396 different tilings.
_
|| _
|||_|||
|_|
(End)
12*a(n) = number of walks of length n in the cyclic Kautz digraph CK(3,4). - Miquel A. Fiol, Feb 15 2024

Examples

			Convergents are 1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 1393/985, 3363/2378, 8119/5741, 19601/13860, 47321/33461, 114243/80782, ... = A001333/A000129.
The 15 3 X 2 crossword grids, with white squares represented by an o:
  ooo ooo ooo ooo ooo ooo ooo oo. o.o .oo o.. .o. ..o oo. .oo
  ooo oo. o.o .oo o.. .o. ..o ooo ooo ooo ooo ooo ooo .oo oo.
G.f. = 1 + x + 3*x^2 + 7*x^3 + 17*x^4 + 41*x^5 + 99*x^6 + 239*x^7 + 577*x^8 + ...
		

References

  • M. R. Bacon and C. K. Cook, Some properties of Oresme numbers and convolutions ..., Fib. Q., 62:3 (2024), 233-240.
  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 204.
  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
  • J. Devillet, J.-L. Marichal, and B. Teheux, Classifications of quasitrivial semigroups, Semigroup Forum, 100 (2020), 743-764.
  • Maribel Díaz Noguera [Maribel Del Carmen Díaz Noguera], Rigoberto Flores, Jose L. Ramirez, and Martha Romero Rojas, Catalan identities for generalized Fibonacci polynomials, Fib. Q., 62:2 (2024), 100-111.
  • Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
  • R. P. Grimaldi, Ternary strings with no consecutive 0's and no consecutive 1's, Congressus Numerantium, 205 (2011), 129-149.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.5 The Fibonacci and Related Sequences, p. 288.
  • A. F. Horadam, R. P. Loh, and A. G. Shannon, Divisibility properties of some Fibonacci-type sequences, pp. 55-64 of Combinatorial Mathematics VI (Armidale 1978), Lect. Notes Math. 748, 1979.
  • Thomas Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
  • Kin Y. Li, Math Problem Book I, 2001, p. 24, Problem 159.
  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 102, Problem 10.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 224.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Volume 1 (1986), p. 203, Example 4.1.2.
  • A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12.
  • R. C. Tilley et al., The cell growth problem for filaments, Proc. Louisiana Conf. Combinatorics, ed. R. C. Mullin et al., Baton Rouge, 1970, 310-339.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 34.

Crossrefs

For denominators see A000129.
See A040000 for the continued fraction expansion of sqrt(2).
See also A078057 which is the same sequence without the initial 1.
Cf. also A002203, A152113.
Row sums of unsigned Chebyshev T-triangle A053120. a(n)= A054458(n, 0) (first column of convolution triangle).
Row sums of A140750, A160756, A135837.
Equals A034182(n-1) + 2 and A084128(n)/2^n. First differences of A052937. Partial sums of A052542. Pairwise sums of A048624. Bisection of A002965.
The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.
Second row of the array in A135597.
Cf. A055099.
Cf. A028859, A001906 / A088305, A033303, A000225, A095263, A003945, A006356, A002478, A214260, A001911 and A000217 for other restricted ternary words.
Cf. Triangle A106513 (alternating row sums).
Equals A293004 + 1.
Cf. A033539, A332602, A086395 (subseq. of primes).

Programs

  • Haskell
    a001333 n = a001333_list !! n
    a001333_list = 1 : 1 : zipWith (+)
                           a001333_list (map (* 2) $ tail a001333_list)
    -- Reinhard Zumkeller, Jul 08 2012
    
  • Magma
    [n le 2 select 1 else 2*Self(n-1)+Self(n-2): n in [1..35]]; // Vincenzo Librandi, Nov 10 2018
    
  • Maple
    A001333 := proc(n) option remember; if n=0 then 1 elif n=1 then 1 else 2*procname(n-1)+procname(n-2) fi end;
    Digits := 50; A001333 := n-> round((1/2)*(1+sqrt(2))^n);
    with(numtheory): cf := cfrac (sqrt(2),1000): [seq(nthnumer(cf,i), i=0..50)];
    a:= n-> (M-> M[2, 1]+M[2, 2])(<<2|1>, <1|0>>^n):
    seq(a(n), n=0..33);  # Alois P. Heinz, Aug 01 2008
    A001333List := proc(m) local A, P, n; A := [1,1]; P := [1,1];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(A), P[-2]]);
    A := [op(A), P[-1]] od; A end: A001333List(32); # Peter Luschny, Mar 26 2022
  • Mathematica
    Insert[Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[2], n]]], {n, 1, 40}], 1, 1] (* Stefan Steinerberger, Apr 08 2006 *)
    Table[((1 - Sqrt[2])^n + (1 + Sqrt[2])^n)/2, {n, 0, 29}] // Simplify (* Robert G. Wilson v, May 02 2006 *)
    a[0] = 1; a[1] = 1; a[n_] := a[n] = 2a[n - 1] + a[n - 2]; Table[a@n, {n, 0, 29}] (* Robert G. Wilson v, May 02 2006 *)
    Table[ MatrixPower[{{1, 2}, {1, 1}}, n][[1, 1]], {n, 0, 30}] (* Robert G. Wilson v, May 02 2006 *)
    a=c=0;t={b=1}; Do[c=a+b+c; AppendTo[t,c]; a=b;b=c,{n,40}]; t (* Vladimir Joseph Stephan Orlovsky, Mar 23 2009 *)
    LinearRecurrence[{2, 1}, {1, 1}, 40] (* Vladimir Joseph Stephan Orlovsky, Mar 23 2009 *)
    Join[{1}, Numerator[Convergents[Sqrt[2], 30]]] (* Harvey P. Dale, Aug 22 2011 *)
    Table[(-I)^n ChebyshevT[n, I], {n, 10}] (* Eric W. Weisstein, Apr 04 2017 *)
    CoefficientList[Series[(-1 + x)/(-1 + 2 x + x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
    Table[Sqrt[(ChebyshevT[n, 3] + (-1)^n)/2], {n, 0, 20}] (* Eric W. Weisstein, Apr 17 2018 *)
  • PARI
    {a(n) = if( n<0, (-1)^n, 1) * contfracpnqn( vector( abs(n), i, 1 + (i>1))) [1, 1]}; /* Michael Somos, Sep 02 2012 */
    
  • PARI
    {a(n) = polchebyshev(n, 1, I) / I^n}; /* Michael Somos, Sep 02 2012 */
    
  • PARI
    a(n) = real((1 + quadgen(8))^n); \\ Michel Marcus, Mar 16 2021
    
  • PARI
    { for (n=0, 4000, a=contfracpnqn(vector(n, i, 1+(i>1)))[1, 1]; if (a > 10^(10^3 - 6), break); write("b001333.txt", n, " ", a); ); } \\ Harry J. Smith, Jun 12 2009
    
  • Python
    from functools import cache
    @cache
    def a(n): return 1 if n < 2 else 2*a(n-1) + a(n-2)
    print([a(n) for n in range(32)]) # Michael S. Branicky, Nov 13 2022
  • Sage
    from sage.combinat.sloane_functions import recur_gen2
    it = recur_gen2(1,1,2,1)
    [next(it) for i in range(30)] ## Zerinvary Lajos, Jun 24 2008
    
  • Sage
    [lucas_number2(n,2,-1)/2 for n in range(0, 30)] # Zerinvary Lajos, Apr 30 2009
    

Formula

a(n) = A055642(A125058(n)). - Reinhard Zumkeller, Feb 02 2007
a(n) = 2a(n-1) + a(n-2);
a(n) = ((1-sqrt(2))^n + (1+sqrt(2))^n)/2.
a(n)+a(n+1) = 2 A000129(n+1). 2*a(n) = A002203(n).
G.f.: (1 - x) / (1 - 2*x - x^2) = 1 / (1 - x / (1 - 2*x / (1 + x))). - Simon Plouffe in his 1992 dissertation.
A000129(2n) = 2*A000129(n)*a(n). - John McNamara, Oct 30 2002
a(n) = (-i)^n * T(n, i), with T(n, x) Chebyshev's polynomials of the first kind A053120 and i^2 = -1.
a(n) = a(n-1) + A052542(n-1), n>1. a(n)/A052542(n) converges to sqrt(1/2). - Mario Catalani (mario.catalani(AT)unito.it), Apr 29 2003
E.g.f.: exp(x)cosh(x*sqrt(2)). - Paul Barry, May 08 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)2^k. - Paul Barry, May 13 2003
For n > 0, a(n)^2 - (1 + (-1)^(n))/2 = Sum_{k=0..n-1} ((2k+1)*A001653(n-1-k)); e.g., 17^2 - 1 = 288 = 1*169 + 3*29 + 5*5 + 7*1; 7^2 = 49 = 1*29 + 3*5 + 5*1. - Charlie Marion, Jul 18 2003
a(n+2) = A078343(n+1) + A048654(n). - Creighton Dement, Jan 19 2005
a(n) = A000129(n) + A000129(n-1) = A001109(n)/A000129(n) = sqrt(A001110(n)/A000129(n)^2) = ceiling(sqrt(A001108(n))). - Henry Bottomley, Apr 18 2000
Also the first differences of A000129 (the Pell numbers) because A052937(n) = A000129(n+1) + 1. - Graeme McRae, Aug 03 2006
a(n) = Sum_{k=0..n} A122542(n,k). - Philippe Deléham, Oct 08 2006
For another recurrence see A000129.
a(n) = Sum_{k=0..n} A098158(n,k)*2^(n-k). - Philippe Deléham, Dec 26 2007
a(n) = upper left and lower right terms of [1,1; 2,1]^n. - Gary W. Adamson, Mar 12 2008
If p[1]=1, and p[i]=2, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, Apr 29 2010
For n>=2, a(n)=F_n(2)+F_(n+1)(2), where F_n(x) is Fibonacci polynomial (cf. A049310): F_n(x) = Sum_{i=0..floor((n-1)/2)} binomial(n-i-1,i)x^(n-2*i-1). - Vladimir Shevelev, Apr 13 2012
a(-n) = (-1)^n * a(n). - Michael Somos, Sep 02 2012
Dirichlet g.f.: (PolyLog(s,1-sqrt(2)) + PolyLog(s,1+sqrt(2)))/2. - Ilya Gutkovskiy, Jun 26 2016
a(n) = A000129(n) - A000129(n-1), where A000129(n) is the n-th Pell Number. Hence the continued fraction is of the form 1-(A000129(n-1)/A000129(n)). - Gregory L. Simay, Nov 09 2018
a(n) = (A000129(n+3) + A000129(n-3))/10, n>=3. - Paul Curtz, Jun 16 2021
a(n) = (A000129(n+6) - A000129(n-6))/140, n>=6. - Paul Curtz, Jun 20 2021
a(n) = round((1/2)*sqrt(Product_{k=1..n} 4*(1 + sin(k*Pi/n)^2))), for n>=1. - Greg Dresden, Dec 28 2021
a(n)^2 + a(n+1)^2 = A075870(n+1) = 2*(b(n)^2 + b(n+1)^2) for all n in Z where b(n) := A000129(n). - Michael Somos, Apr 02 2022
a(n) = 2*A048739(n-2)+1. - R. J. Mathar, Feb 01 2024
Sum_{n>=1} 1/a(n) = 1.5766479516393275911191017828913332473... - R. J. Mathar, Feb 05 2024
From Peter Bala, Jul 06 2025: (Start)
G.f.: Sum_{n >= 1} (-1)^(n+1) * x^(n-1) * Product_{k = 1..n} (1 - k*x)/(1 - 3*x + k*x^2).
The following series telescope:
Sum_{n >= 1} (-1)^(n+1)/(a(2*n) + 1/a(2*n)) = 1/4, since 1/(a(2*n) + 1/a(2*n)) = 1/A077445(n) + 1/A077445(n+1).
Sum_{n >= 1} (-1)^(n+1)/(a(2*n+1) - 1/a(2*n+1)) = 1/8, since. 1/(a(2*n+1) - 1/a(2*n+1)) = 1/(4*Pell(2*n)) + 1/(4*Pell(2*n+2)), where Pell(n) = A000129(n).
Sum_{n >= 1} (-1)^(n+1)/(a(2*n+1) + 9/a(2*n+1)) = 1/10, since 1/(a(2*n+1) + 9/a(2*n+1)) = b(n) + b(n+1), where b(n) = A001109(n)/(2*Pell(2*n-1)*Pell(2*n+1)).
Sum_{n >= 1} (-1)^(n+1)/(a(n)*a(n+1)) = 1 - sqrt(2)/2 = A268682, since (-1)^(n+1)/(a(n)*a(n+1)) = Pell(n)/a(n) - Pell(n+1)/a(n+1). (End)

Extensions

Chebyshev comments from Wolfdieter Lang, Jan 10 2003

A006356 a(n) = 2*a(n-1) + a(n-2) - a(n-3) for n >= 3, starting with a(0) = 1, a(1) = 3, and a(2) = 6.

Original entry on oeis.org

1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, 4004, 8997, 20216, 45425, 102069, 229347, 515338, 1157954, 2601899, 5846414, 13136773, 29518061, 66326481, 149034250, 334876920, 752461609, 1690765888, 3799116465, 8536537209, 19181424995
Offset: 0

Views

Author

Keywords

Comments

Number of distributive lattices; also number of paths with n turns when light is reflected from 3 glass plates.
Let u(k), v(k), w(k) be defined by u(1) = 1, v(1) = 0, w(1) = 0 and u(k+1) = u(k) + v(k) + w(k), v(k+1) = u(k) + v(k), w(k+1) = u(k); then {u(n)} = 1, 1, 3, 6, 14, 31, ... (this sequence with an extra initial 1), {v(n)} = 0, 1, 2, 5, 11, 25, ... (A006054 with its initial 0 deleted) and {w(n)} = {u(n)} prefixed by an extra 0 = A077998 with an extra initial 0. - Benoit Cloitre, Apr 05 2002
Also u(k)^2 + v(k)^2 + w(k)^2 = u(2*k). - Gary W. Adamson, Dec 23 2003
The n-th term of the series is the number of paths for a ray of light that enters two layers of glass and then is reflected exactly n times before leaving the layers of glass.
One such path (with 2 plates of glass and 3 reflections) might be:
...\........./..................
--------------------------------
....\/\..../....................
--------------------------------
........\/......................
--------------------------------
For a k-glass sequence, say a(n,k), a(n,k) is always asymptotic to z(k)*w(k)^n where w(k) = (1/2)/cos(k*Pi/(2*k+1)) and it is conjectured that z(k) is the root 1 < x < 2 of a polynomial of degree Phi(2k+1)/2.
Number of ternary sequences of length n-1 such that every pair of consecutive digits has a sum less than 3. That is to say, the pairs (1,2), (2,1) and (2,2) do not appear. - George J. Schaeffer (gschaeff(AT)andrew.cmu.edu), Sep 07 2004
Number of weakly up-down sequences of length n using the digits {1,2,3}. When n=2 the sequences are 11, 12, 13, 22, 23, 33.
Form the graph with matrix A = [1, 1, 1; 1, 0, 0; 1, 0, 1]. Then A006356 counts walks of length n that start at the degree 4 vertex. - Paul Barry, Oct 02 2004
In general, the g.f. for p glass plates is: A(x) = F_{p-1}(-x)/F_p(x) where F_p(x) = Sum_{k=0..p} (-1)^[(k+1)/2]*C([(p+k)/2],k)*x^k. - Paul D. Hanna, Feb 06 2006
Equals the INVERT transform of (1, 2, 1, 1, 1, ...) equivalent to a(n) = a(n-1) + 2*a(n-2) + a(n-3) + a(n-4) + ... + 1. a(6) = 70 = (31 + 2*14 + 6 + 3 + 1 + 1). - Gary W. Adamson, Apr 27 2009
a(n) = the number of terms in the n-th iterate of sequence A179542 generated from the rules a(0) = 1, then (1->1,2,3), (2->1,2), (3->1).
Example: 3rd iterate = (1,2,3,1,2,1,1,2,3,1,2,1,2,3) = 14 terms composed of a frequency of (6, 5, 3): (1's, 2's, and 3's), where a(3) = 14, and the [6, 5, 3] = top row and left column of the 3rd power of M, the matrix generator [1,1,1; 1,1,0; 1,0,0] or a(2) = 6, A006054(4) = 5, and a(1) = 3.
Given the heptagon diagonal lengths with edge = 1: (a = 1, b = 1.80193773..., c = 2.24697...) = (1, 2*cos(Pi/7), (1 + 2*cos(2*Pi/7))), and using the diagonal product formulas in [Steinbach], we obtain: c^n = c*a(n-2) + b*A006054(n) + a(n-3) corresponding to the top row of M^(n-1), in the case M^3 = [6, 5, 3]. Example: c^4 = 25.491566... = 6*c + 5*b + 3 = 13.481... + 9.00968... + 3. - Gary W. Adamson, Jul 18 2010
Equals row sums of triangle A180262. - Gary W. Adamson, Aug 21 2010
The number of the one-sided n-step prudent walks, avoiding 2 or more consecutive east steps. - Shanzhen Gao, Apr 27 2011
a(n) = [A_{7,2}^(n+2)](1,1), where A{7,2} is the 3 X 3 unit-primitive matrix (see [Jeffery]) A_{7,2} = [0,0,1; 0,1,1; 1,1,1]. The denominator of the generating function for this sequence is also the characteristic polynomial of A_{7,2}. - L. Edson Jeffery, Dec 06 2011 [See the comments for sequence A306334. - Petros Hadjicostas, Nov 17 2019]
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [1, 1, 1; 1, 0, 0; 1, 0, 1] or of the 3 X 3 matrix [1, 1, 1; 1, 1, 0; 1, 0, 0]. - R. J. Mathar, Feb 03 2014
Successive sequences in this set (A006356, A006357, A006358, etc.) can be generated as follows: Begin with (1, 1, 1, 1, 1, 1, ...); and perform an operation with three steps to get the next sequence in the series. First, put alternate signs in the current series: With (1, 1, 1, ...) this equals (1, -1, 1, -1, ...); then take the inverse, getting (1, 1, 0, 0, 0, ...). Take the INVERT transform of the last step, getting (1, 2, 3, 5, 8, ...). Repeat the three steps using (1, 2, 3, 5, ...) --> (1, -2, 3, -5) --> (1, 2, 1, 1, 1, ...) --> (1, 3, 6, 14, 31, ...). Repeat the three steps using (1, 3, 6, 14, 31, ...), getting (1, 4, 10, 30, 85, ...) = A006357; and so on. - Gary W. Adamson, Aug 08 2019
Let W_n be the fence poset (a.k.a. zig-zag poset) of size n. Let [2] be a chain of size 2. Then a(n) is the number of antichains in the product poset W_n X [2]. See Berman- Koehler link. - Geoffrey Critzer, Jun 13 2023
a(n) is the number of double-dimer covers of the 2 X (n+1) square grid graph. See Musiker et al. link. - Nicholas Ovenhouse, Jan 07 2024
In general, the number of weakly up-down words of length n over an alphabet of size k is given by 4/(2*k+1)*|Sum_{j = 1..k} sin^2(2*j*Pi/(2*k+1))/(2*cos^2(2*j*Pi/(2*k+1)))^(n+1)| and the corresponding g. f. is given by V_(k-1)(-x/2)/W_k(x/2) if k is even and -W_(k-1)(-x/2) / V_k(x/2) if k is odd, where V_m(x) and W_m(x) are the Chebyshev polynomials of the third and fourth kind, respectively (see Paul D. Hanna's comment above and the Fried link). - Sela Fried, Apr 01 2025

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd edition, p. 291 (very briefly without generalizations).
  • J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
  • Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A038196 (3-wave sequence).
Cf. A179542. - Gary W. Adamson, Jul 18 2010
Cf. A180262. - Gary W. Adamson, Aug 21 2010

Programs

  • Haskell
    a006056 n = a006056_list !! n
    a006056_list = 1 : 3 : 6 : zipWith (+) (map (2 *) $ drop 2 a006056_list)
       (zipWith (-) (tail a006056_list) a006056_list)
    -- Reinhard Zumkeller, Oct 14 2011
    
  • Magma
    [ n eq 1 select 1 else n eq 2 select 3 else n eq 3 select 6 else 2*Self(n-1)+Self(n-2)- Self(n-3): n in [1..40] ] ; // Vincenzo Librandi, Aug 20 2011
    
  • Maple
    A006356:=-(-1-z+z**2)/(1-2*z-z**2+z**3); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{2,1,-1},{1,3,6},30] (* or *) CoefficientList[ Series[ (1+x-x^2)/(1-2x-x^2+x^3),{x,0,30}],x] (* Harvey P. Dale, Jul 06 2011 *)
    Table[If[n==0, a2=0; a1=1; a0=1, a3=a2; a2=a1; a1=a0; a0=2*a1+a2-a3], {n, 0, 29}] (* Jean-François Alcover, Apr 30 2013 *)
  • Maxima
    a(n):=sum(sum((sum(binomial(j,-3*k+2*j+i)*(-1)^(j-k)*binomial(k,j),j,0,k))*binomial(n+k-i-1,k-1),i,k,n),k,1,n); /* Vladimir Kruchinin, May 05 2011 */
    
  • PARI
    {a(n)=local(p=3);polcoeff(sum(k=0,p-1,(-1)^((k+1)\2)*binomial((p+k-1)\2,k)* (-x)^k)/sum(k=0,p,(-1)^((k+1)\2)*binomial((p+k)\2,k)*x^k+x*O(x^n)),n)} \\ Paul D. Hanna, Feb 06 2006
    
  • PARI
    Vec((1+x-x^2)/(1-2*x-x^2+x^3)+O(x^66)) \\ Joerg Arndt, Apr 30 2013
    
  • Python
    from math import comb
    def A006356(n): return sum(comb(j,a)*comb(k,j)*comb(n+k-i,k-1)*(-1 if j-k&1 else 1) for k in range(1,n+2) for i in range(k,n+2) for j in range(k+1) if (a:=-3*k+2*j+i)>=0) # Chai Wah Wu, Feb 19 2024

Formula

a(n) is asymptotic to z(3)*w(3)^n where w(3) = (1/2)/cos(3*Pi/7) and z(3) is the root 1 < X < 2 of P(3, X) = 1 - 14*X - 49*X^2 + 49*X^3. w(3) = 2.2469796.... z(3) = 1.220410935...
G.f.: (1 + x - x^2)/(1 - 2*x - x^2 + x^3). - Paul D. Hanna, Feb 06 2006
a(n) = a(n-1) + a(n-2) + A006054(n+1). - Gary W. Adamson, Jun 05 2008
a(n) = A006054(n+2) + A006054(n+1) - A006054(n). - R. J. Mathar, Apr 07 2011
a(n-1) = Sum_{k = 1..n} Sum_{i = k..n} Sum_{j = 0..k} binomial(j, -3*k+2*j+i) * (-1)^(j-k) * binomial(k, j) * binomial(n+k-i-1, k-1). - Vladimir Kruchinin, May 05 2011
Sum_{k=0..n} a(k) = a(n+1) - a(n-1) - 1. - Greg Dresden and Mina BH Arsanious, Aug 23 2023

Extensions

Recurrence, alternative description from Jacques Haubrich (jhaubrich(AT)freeler.nl)
Alternative definition added by Andrew Niedermaier, Nov 11 2008

A052534 Expansion of (1-x)*(1+x)/(1-2*x-x^2+x^3).

Original entry on oeis.org

1, 2, 4, 9, 20, 45, 101, 227, 510, 1146, 2575, 5786, 13001, 29213, 65641, 147494, 331416, 744685, 1673292, 3759853, 8448313, 18983187, 42654834, 95844542, 215360731, 483911170, 1087338529, 2443227497, 5489882353, 12335653674
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Pairwise sums of A006356. Cf. A033303, A077850. - Ralf Stephan, Jul 06 2003
Number of (3412, P)-avoiding involutions in S_{n+1}, where P={1342, 1423, 2314, 3142, 2431, 4132, 3241, 4213, 21543, 32154, 43215, 15432, 53241, 52431, 42315, 15342, 54321}. - Ralf Stephan, Jul 06 2003
Number of 31- and 22-avoiding words of length n on alphabet {1,2,3} which do not end in 3 (e.g., at n=3, we have 111, 112, 121, 132, 211, 212, 232, 321 and 332). See A028859, A001519. - Jon Perry, Aug 04 2003
Form the graph with matrix A=[1, 1, 1; 1, 0, 0; 1, 0, 1]. Then the sequence 1,1,2,4,... with g.f. (1-x-x^2)/(1-2x-x^2+x^3) counts closed walks of length n at the degree 3 vertex. - Paul Barry, Oct 02 2004
a(n) is the number of Motzkin (n+1)-sequences whose flatsteps all occur at level <=1 and whose height is <=2. For example, a(5)=45 counts all 51 Motzkin 6-paths except FUUFDD, UFUFDD, UUFDDF, UUFDFD, UUFFDD, UUUDDD (the first five violate the flatstep restriction and the last violates the height restriction). - David Callan, Dec 09 2004
From Paul Barry, Nov 03 2010: (Start)
The g.f. of 1,1,2,4,9,... can be expressed as 1/(1-x/(1-x/(1-x^2))) and as 1/(1-x-x^2/(1-x-x^2)).
The second expression shows the link to the Motzkin numbers. (End)
From Emeric Deutsch, Oct 31 2010: (Start)
a(n) is the number of compositions of n into odd summands when we have two kinds of 1's. Proof: the g.f. of the set S={1,1',3,5,7,...} is g=2x+x^3/(1-x^2) and the g.f. of finite sequences of elements of S is 1/(1-g). Example: a(4)=20 because we have 1+3, 1'+3, 3+1, 3+1', and 2^4=16 of sums x+y+z+u, where x,y,z,u are taken from {1,1'}.
(End)
a(n-1) is the top left entry of the n-th power of any of the six 3 X 3 matrices [1, 1, 0; 1, 1, 1; 0, 1, 0] or [1, 1, 1; 0, 1, 1; 1, 1, 0] or [1, 0, 1; 1, 1, 1; 1, 1, 0] or [1, 1, 1; 1, 0, 1; 0, 1, 1] or [1, 0, 1; 0, 0, 1; 1, 1, 1] or [1, 1, 0; 1, 0, 1; 1, 1, 1]. - R. J. Mathar, Feb 03 2014

Examples

			G.f. = 1 + 2*x + 4*x^2 + 9*x^3 + 20*x^4 + 45*x^5 + 101*x^6 + 227*x^7 + 510*x^8 + ... - _Michael Somos_, Dec 12 2023
		

Crossrefs

Programs

  • GAP
    a:=[1,2,4];; for n in [4..40] do a[n]:=2*a[n-1]+a[n-2]-a[n-3]; od; a; # G. C. Greubel, May 09 2019
  • Magma
    [n le 3 select 2^(n-1) else 2*Self(n-1)+Self(n-2)-Self(n-3): n in [1..40]]; // Vincenzo Librandi, Mar 17 2015
    
  • Maple
    spec := [S,{S=Sequence(Union(Z,Prod(Z,Sequence(Prod(Z,Z)))))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    LinearRecurrence[{2,1,-1},{1,2,4},40] (* Roman Witula, Aug 07 2012 *)
    CoefficientList[Series[(1-x^2)/(1-2x-x^2+x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 17 2015 *)
    a[ n_] := {0, 1, 0} . MatrixPower[{{1, 1, 1}, {1, 1, 0}, {1, 0, 0}}, n+1] . {0, 1, 0}; (* Michael Somos, Dec 12 2023 *)
  • Maxima
    h(n):=if n=0 then 1 else sum(sum(binomial(k,j)*binomial(j,n-3*k+2*j)*2^(3*k-n-j)*(-1)^(k-j),j,0,k),k,1,n); a(n):=if n<2 then h(n) else h(n)-h(n-2); /* Vladimir Kruchinin, Sep 09 2010 */
    
  • PARI
    my(x='x+O('x^40)); Vec((1-x^2)/(1-2*x-x^2+x^3)) \\ G. C. Greubel, May 09 2019
    
  • PARI
    {a(n) = [0, 1, 0] * [1, 1, 1; 1, 1, 0; 1, 0, 0]^(n+1) * [0, 1, 0]~}; /* Michael Somos, Dec 12 2023 */
    
  • SageMath
    ((1-x^2)/(1-2*x-x^2+x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 09 2019
    

Formula

G.f.: (1 - x^2)/(1 - 2*x - x^2 + x^3).
a(n) = 2*a(n-1) + a(n-2) - a(n-3), with a(0)=1, a(1)=2, a(2)=4.
a(n) = Sum_{alpha = RootOf(1-2*x-x^2+x^3)} (1/7)*(2 + alpha)*alpha^(-1-n).
a(n) = central term in the (n+1)-th power of the 3 X 3 matrix (shown in the example of A066170): [1 1 1 / 1 1 0 / 1 0 0]. E.g. a(6) = 101 since the central term in M^7 = 101. - Gary W. Adamson, Feb 01 2004
a(n) = A006054(n+2) - A006054(n). - Vladimir Kruchinin, Sep 09 2010
a(n) = A077998(n+2) - 2*A006054(n+2), which implies 7*a(n-2) = (2 + c(4) - 2*c(2))*(1 + c(1))^n + (2 + c(1) - 2*c(4))*(1 + c(2))^n + (2 + c(2) - 2*c(1))*(1 + c(4))^n, where c(j)=2*Cos(2Pi*j/7), a(-2)=a(-1)=1 since A077998 and A006054 are equal to the respective quasi-Fibonacci numbers. [Witula, Slota and Warzynski] - Roman Witula, Aug 07 2012
a(n+1) = A033303(n+1) - A033303(n). - Roman Witula, Sep 14 2012
a(n) = A006054(n+2)-A006054(n). - R. J. Mathar, Nov 23 2020
a(n) = A028495(-1-n) for all n in Z. - Michael Somos, Dec 12 2023

A190360 Number of one-sided n-step prudent walks, avoiding 4 or more consecutive east steps.

Original entry on oeis.org

1, 3, 7, 17, 40, 96, 229, 547, 1306, 3119, 7448, 17786, 42473, 101426, 242206, 578390, 1381200, 3298317, 7876408, 18808927, 44915872, 107259471, 256136497, 611656057, 1460639684, 3488019553, 8329419319, 19890721694, 47499206650
Offset: 0

Views

Author

Shanzhen Gao, May 09 2011

Keywords

Comments

a(n,k) is the number of one-sided n-step prudent walks, avoiding k or more consecutive east steps; k=4 in this sequence.

Crossrefs

Cf. A006356 = a(n,2), A033303 = a(n,3).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n<0, 0,
          `if`(n=0, 1, b(n-1,0) +`if`(i<=0, b(n-1,-1), 0)+
          `if`(i>=0 and i<3, b(n-1,i+1), 0)))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 04 2011
  • Mathematica
    (1+t-t^k)/(1-2*t-t^2+t^(k+1)) /. k -> 4 + O[t]^25 // CoefficientList[#, t]& (* Jean-François Alcover, Oct 24 2016 *)

Formula

G.f.: (1+t-t^k)/(1-2*t-t^2+t^(k+1)), (k=4 in this sequence).

A357484 Number of linearity regions of a max-pooling function with a 3 by n input and 2 by 2 pooling windows.

Original entry on oeis.org

1, 14, 150, 1536, 15594, 158050, 1601356, 16223814, 164366170, 1665216896, 16870539234, 170917714410, 1731590444316, 17542976546494, 177730263461890, 1800609290091936, 18242215773029194, 184814350419581330, 1872379131238643436, 18969325721395559574
Offset: 1

Views

Author

Alejandro H. Morales, Sep 30 2022

Keywords

Comments

a(n) is also the number of vertices of the Minkowski sum of 2*n-2 simplices conv(e_{i,j},e_{i,j+1},e_{i+1,j},e_{i+1,j+1}) for i=0,1 and j=0,...,n-2, viewing R^(3n) having basis {e_{i,j} | i=0,1,2; j=0,...,n-1}.

Examples

			For n = 2 the a(2)=14 vertices are (00,10), (00,11), (00,20), (00,21), (01,10), (01,11), (01,20), (01,21), (10,10), (10, 20), (10,21), (11,11), (11, 20), (11, 21), where (ij,kl) represents e_{i,j}+e_{k,l}. The pair (10,11) does not represent vertices since e_{1,0}+e_{1,1} is a convex combination of the vectors 2e_{1,0} + 2e_{1,1}. Ditto for the pair (11,10).
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
       if n = 1 then
         return(1);
       elif n = 2 then
         return(14);
       elif n = 3 then
         return(150);
       elif n = 4 then
         return(1536);
       else
         return(13*a(n-1) - 31*a(n-2) + 20*a(n-3) - 4*a(n-4));
       end if;
    end proc:
    seq(a(n), n=1..20);
  • Mathematica
    LinearRecurrence[{13, -31, 20, -4}, {1, 14, 150, 1536}, 20] (* Hugo Pfoertner, Oct 05 2022 *)
  • Sage
    @cached_function
    def a(n):
        if n < 5: return [1, 14, 150, 1536][n - 1]
        return 13*a(n-1) - 31*a(n-2) + 20*a(n-3) - 4*a(n-4)
    print([a(n) for n in range(1, 21)])

Formula

a(n) = 13*a(n-1) - 31*a(n-2) + 20*a(n-3) - 4*a(n-4) for n>= 5.
G.f.: (x+x^2-x^3)/(1-13*x+31*x^2-20*x^3+4*x^4).

A357592 Number of edges of the Minkowski sum of n simplices with vertices e_(i+1), e_(i+2), e_(i+3) for i=0,...,n-1, where e_i is a standard basis vector.

Original entry on oeis.org

3, 11, 34, 96, 260, 683, 1757, 4447, 11114, 27493
Offset: 1

Views

Author

Alejandro H. Morales, Oct 05 2022

Keywords

Crossrefs

Programs

  • Sage
    def a(n): return len(PP(n,3,1).graph().edges())
    def Delta(I,n):
        IM = identity_matrix(n)
        return Polyhedron(vertices=[IM[e] for e in I],backend='normaliz')
    def Py(n,SL,yL):
        return sum(yL[i]*Delta(SL[i],n) for i in range(len(SL)))
    def PP(n,k,s):
        SS = [set(range(s*i,k+s*i)) for i in range(n)],[1,]*(n)
        return Py(s*(n-1)+k,SS[0],SS[1])
    [a(n) for n in range(1,4)]

A357593 Number of faces of the Minkowski sum of n simplices with vertices e_(i+1), e_(i+2), e_(i+3) for i=0,...,n-1, where e_i is a standard basis vector.

Original entry on oeis.org

8, 26, 88, 298, 1016, 3466, 11832, 40394, 137912, 470858
Offset: 1

Views

Author

Alejandro H. Morales, Oct 05 2022

Keywords

Examples

			For n=1, the polytope is the simplex with vertices (1,0,0), (0,1,0), and (0,0,1) that has a(1)=8 faces (1 empty face, 3 vertices, 3 edges, and 1 facet).
		

Crossrefs

Programs

  • Sage
    def a(n): return add(PP(n,3,1).f_vector())
    def Delta(I,n):
        IM = identity_matrix(n)
        return Polyhedron(vertices=[IM[e] for e in I],backend='normaliz')
    def Py(n,SL,yL):
        return sum(yL[i]*Delta(SL[i],n) for i in range(len(SL)))
    def PP(n,k,s):
        SS = [set(range(s*i,k+s*i)) for i in range(n)],[1,]*(n)
        return Py(s*(n-1)+k,SS[0],SS[1])
    [a(n) for n in range(1,4)]

A377322 Number of cells that are a distance of n away in an order-5 hyperbolic square tiling.

Original entry on oeis.org

1, 4, 12, 28, 64, 148, 340, 780, 1792, 4116, 9452, 21708, 49856, 114500, 262964, 603932, 1387008, 3185444, 7315788, 16801660, 38587200, 88620532, 203528596, 467429932, 1073513728, 2465464116, 5662259500, 13004116524, 29865647552, 68590349988, 157526673524
Offset: 0

Views

Author

Lewis Chen, Oct 24 2024

Keywords

Comments

Also known as a {4,5} tiling.
The formula given in the MathOverflow answer (4 * A033303) is erroneous after n=3.

Crossrefs

Cf. A008574, A054888 (dual).

Programs

  • PARI
    Vec((1 + 2*x + 4*x^2 + 2*x^3 + x^4)/(1 - 2*x - 2*x^3 + x^4) + O(x^31)) \\ Andrew Howroyd, Feb 12 2025

Formula

G.f.: (1 + 2*x + 4*x^2 + 2*x^3 + x^4)/(1 - 2*x - 2*x^3 + x^4). - Andrew Howroyd, Feb 12 2025

Extensions

a(20) onwards from Andrew Howroyd, Feb 12 2025
Showing 1-8 of 8 results.