A094648
An accelerator sequence for Catalan's constant.
Original entry on oeis.org
3, -1, 5, -4, 13, -16, 38, -57, 117, -193, 370, -639, 1186, -2094, 3827, -6829, 12389, -22220, 40169, -72220, 130338, -234609, 423065, -761945, 1373466, -2474291, 4459278, -8034394, 14478659, -26088169, 47011093, -84708772, 152642789, -275049240
Offset: 0
We have a(17) = a(19) + 50000, a(4) + a(5) = -3, 2*a(7) + a(8) = 3, and 2*a(9) + a(10) = a(5). - _Roman Witula_, Sep 14 2012
- G. C. Greubel, Table of n, a(n) for n = 0..3900
- A. Akbary and Q. Wang, On some permutation polynomials over finite fields, International Journal of Mathematics and Mathematical Sciences, 2005:16 (2005) 2631-2640.
- A. Akbary and Q. Wang, A generalized Lucas sequence and permutation binomials, Proceeding of the American Mathematical Society, 134 (1) (2006), 15-22.
- David M. Bradley, A Class of Series Acceleration Formulae for Catalan's Constant, The Ramanujan Journal, Vol. 3, Issue 2, 1999, pp. 159-173
- David M. Bradley, A Class of Series Acceleration Formulae for Catalan's Constant, arXiv:0706.0356 [math.CA], 2007.
- Kai Wang, Fibonacci Numbers And Trigonometric Functions Outline, (2019).
- Q. Wang, On generalized Lucas sequences, Contemp. Math. 531 (2010) 127-141
- Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2Pi/7, J. Integer Seq., 12 (2009), Article 09.8.5.
- Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6
- Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (-1,2,1).
Cf.
A215007,
A215008,
A215143,
A215493,
A215494,
A215510,
A215512,
A215575,
A215694,
A215695,
A108716,
A215794,
A215828,
A215817,
A215877,
A094429,
A094430,
A217274.
-
I:=[3,-1,5]; [n le 3 select I[n] else -Self(n-1)+2*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jul 25 2015
-
CoefficientList[ Series[(3 + 2x - 2x^2)/(1 + x - 2x^2 - x^3), {x, 0, 33}], x] (* Robert G. Wilson v, May 24 2004 *)
a[n_] := Round[(2Sin[3Pi/14])^n + (-2Sin[Pi/14])^n + (-2Cos[Pi/7])^n]; Table[ a[n], {n, 0, 33}] (* Robert G. Wilson v, May 24 2004 *)
LinearRecurrence[{-1,2,1}, {3,-1,5}, 50] (* Roman Witula, Aug 09 2012 *)
-
x='x+O('x^30); Vec((3+2*x-2*x^2)/(1+x-2*x^2-x^3)) \\ G. C. Greubel, May 09 2018
A274975
Sum of n-th powers of the three roots of x^3-2*x^2-x+1.
Original entry on oeis.org
3, 2, 6, 11, 26, 57, 129, 289, 650, 1460, 3281, 7372, 16565, 37221, 83635, 187926, 422266, 948823, 2131986, 4790529, 10764221, 24186985, 54347662, 122118088, 274396853, 616564132, 1385407029, 3112981337, 6994805571, 15717185450, 35316195134, 79354770147, 178308549978
Offset: 0
-
CoefficientList[Series[-(x^2 + 4 x - 3)/(x^3 - x^2 - 2 x + 1), {x, 0, 32}], x] (* Michael De Vlieger, Jul 14 2016 *)
-
Vec(-(x^2+4*x-3)/(x^3-x^2-2*x+1) + O(x^50)) \\ Colin Barker, Aug 02 2016
A217274
a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3) with a(0)=0, a(1)=1, a(2)=7.
Original entry on oeis.org
0, 1, 7, 35, 154, 637, 2548, 9996, 38759, 149205, 571781, 2184910, 8333871, 31750824, 120875944, 459957169, 1749692735, 6654580387, 25306064602, 96226175941, 365880389868, 1391138718116, 5289228800247, 20109822277181, 76457523763621, 290689756066542
Offset: 0
Writing c(j) as cj and s(k) as sk,
we have 7*sqrt(7) = c4*s1^5 + c2*s4^5 + c1*s2^5
and c4*s1^13 + c2*s4^13 + c1*s2^13 = 4(c4*s1^11 + c2*s4^11 + c1*s2^11).
We note that a(9) = 87*a(3)*a(2)^2 and a(11) = 2*a(3)*a(5)*a(2)^2.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- R. Witula, Ramanujan type trigonometric formulas, Demonstratio Math., Vol. XLV, No. 4, 2012, pp. 789-796.
- Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6.
- Index entries for linear recurrences with constant coefficients, signature (7,-14,7).
Cf.
A033304,
A094429,
A094430,
A094648,
A108716,
A215007,
A215008,
A215143,
A215493,
A215494,
A215510,
A215512,
A215575,
A215694,
A215695,
A215794,
A215817,
A215828,
A215877,
A217444.
-
I:=[0,1,7]; [n le 3 select I[n] else 7*Self(n-1)-14*Self(n-2)+7*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 26 2015
-
LinearRecurrence[{7,-14,7}, {0,1,7}, 30]
CoefficientList[Series[x/(1 - 7*x + 14*x^2 - 7*x^3), {x,0,50}], x] (* G. C. Greubel, Apr 16 2017 *)
-
a[0]:0$
a[1]:1$
a[2]:7$
a[n]:=7*a[n-1] - 14*a[n-2] + 7*a[n-3];
makelist(a[n], n, 0, 25); /* Martin Ettl, Oct 11 2012 */
-
concat(0, Vec(x/(1-7*x+14*x^2-7*x^3) + O(x^40))) \\ Michel Marcus, Jul 25 2015
A274032
Sum of n-th powers of the roots of x^3 + 9*x^2 - x - 1.
Original entry on oeis.org
3, -9, 83, -753, 6851, -62329, 567059, -5159009, 46935811, -427014249, 3884905043, -35344223825, 321555905219, -2925462465753, 26615373873171, -242142271419073, 2202970354179075, -20042260085157577, 182341168849178195, -1658909809373582257
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- B. C. Berndt, L.-C. Zhang, Ramanujan's identities for eta-functions, Math. Ann. 292 (1992), 561-573.
- Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2Pi/7, J. Integer Seq., 12 (2009), Article 09.8.5.
- Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6
- Roman Witula and Damian Slota, Quasi-Fibonacci Numbers of Order 11, Journal of Integer Sequences, Vol. 10 (2007), Article 07.8.5
- Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (-9,1,1).
A274075
Sum of n-th powers of the roots of x^3 + x^2 - 9*x - 1.
Original entry on oeis.org
3, -1, 19, -25, 195, -401, 2131, -5545, 24323, -72097, 285459, -910009, 3407043, -11311665, 41065043, -139462985, 497736707, -1711838529, 6052005907, -20960815961, 73717030595, -256312368337, 898804827731, -3131899112169, 10964830193411, -38253117375201
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- B. C. Berndt, L.-C. Zhang, Ramanujan's identities for eta-functions, Math. Ann. 292 (1992), 561-573.
- Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2Pi/7, J. Integer Seq., 12 (2009), Article 09.8.5.
- Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6
- Roman Witula and Damian Slota, Quasi-Fibonacci Numbers of Order 11, Journal of Integer Sequences, Vol. 10 (2007), Article 07.8.5
- Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (-1,9,1).
-
FullSimplify[Table[(Tan[Pi/7]/Tan[4*Pi/7])^n + (Tan[4*Pi/7]/Tan[2*Pi/7])^n + (Tan[2*Pi/7]/Tan[Pi/7])^n, {n, 0, 12}]] (* Wesley Ivan Hurt, Jun 11 2016 *)
-
Vec((3+2*x-9*x^2)/(1+x-9*x^2-x^3) + O(x^30)) \\ Colin Barker, Jun 11 2016
-
polsym(x^3 + x^2 - 9*x - 1, 30) \\ Charles R Greathouse IV, Jul 20 2016
A096975
Trace sequence of a path graph plus loop.
Original entry on oeis.org
3, 1, 5, 4, 13, 16, 38, 57, 117, 193, 370, 639, 1186, 2094, 3827, 6829, 12389, 22220, 40169, 72220, 130338, 234609, 423065, 761945, 1373466, 2474291, 4459278, 8034394, 14478659, 26088169, 47011093, 84708772, 152642789, 275049240
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..3910
- A. Akbary, Q. Wang, A generalized Lucas sequence and permutations binomials, Proc. Am. Math. Soc. 134 (2006) 15-22, sequence a(n) with l=7.
- Robin Chapman and Nicholas C. Singer, Eigenvalues of a bidiagonal matrix, Amer. Math. Monthly, 111 (2004), p. 441.
- Tomislav Došlić, Mate Puljiz, Stjepan Šebek, and Josip Žubrinić, On a variant of Flory model, arXiv:2210.12411 [math.CO], 2022.
- L. E. Jeffery, Unit-primitive matrix
- Genki Shibukawa, New identities for some symmetric polynomials and their applications, arXiv:1907.00334 [math.CA], 2019.
- Q. Wang, On generalized Lucas sequences, Contemp. Math. 531 (2010) 127-141, Table 1 (k=3).
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1).
-
CoefficientList[Series[(3 - 2 x - 2 x^2)/(1 - x - 2 x^2 + x^3), {x, 0, 33}], x] (* Michael De Vlieger, Aug 21 2019 *)
-
{a(n)=if(n>=0, n+=1; polsym(x^3-x^2-2*x+1,n-1)[n], n=1-n; polsym(1-x-2*x^2+x^3,n-1)[n])} /* Michael Somos, Aug 03 2006 */
-
a(n)=trace([0,1,0;1,0,1;0,1,1]^n); /* Joerg Arndt, Apr 30 2011 */
A274220
a(n) = (-cos(Pi/7)/cos(2*Pi/7))^n + (-cos(2*Pi/7)/cos(3*Pi/7))^n + (cos(3*Pi/7)/cos(Pi/7))^n.
Original entry on oeis.org
3, -4, 10, -25, 66, -179, 493, -1369, 3818, -10672, 29865, -83626, 234237, -656205, 1838483, -5151080, 14432666, -40438941, 113306686, -317477255, 889550021, -2492461633, 6983719214, -19567941936, 54828148469, -153625048854, 430447808073, -1206087937261, 3379383275971, -9468821484028
Offset: 0
a(0) = 3, a(1) = -4, a(2) = 10, a(3) = -25.
- R. Witula, E. Hetmaniok, D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.
- Colin Barker, Table of n, a(n) for n = 0..1000
- B. C. Berndt, L.-C. Zhang, Ramanujan's identities for eta-functions, Math. Ann. 292 (1992), 561-573.
- Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2Pi/7, J. Integer Seq., 12 (2009), Article 09.8.5.
- Roman Witula, Full Description of Ramanujan Cubic Polynomials, Journal of Integer Sequences, Vol. 13 (2010), Article 10.5.7.
- Roman Witula, Ramanujan Cubic Polynomials of the Second Kind, Journal of Integer Sequences, Vol. 13 (2010), Article 10.7.5.
- Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779-796.
- Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6.
- Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (-4,-3,1).
-
CoefficientList[Series[(3 + 8 x + 3 x^2)/(1 + 4 x + 3 x^2 - x^3), {x, 0, 29}], x] (* Michael De Vlieger, Jun 14 2016 *)
-
Vec((3+8*x+3*x^2)/(1+4*x+3*x^2-x^3) + O(x^30)) \\ Colin Barker, Jun 14 2016
-
polsym(x^3 + 4*x^2 + 3*x - 1,33) \\ Joerg Arndt, Mar 12 2020
A062883
(1-2*cos(1/11*Pi))^n+(1+2*cos(2/11*Pi))^n+(1-2*cos(3/11*Pi))^n+(1+2*cos(4/11*Pi))^n+(1-2*cos(5/11*Pi))^n.
Original entry on oeis.org
4, 12, 25, 64, 159, 411, 1068, 2808, 7423, 19717, 52529, 140251, 375015, 1003770, 2688570, 7204696, 19313075, 51782613, 138861732, 372414289, 998851473, 2679146955, 7186319506, 19276417059, 51707411684, 138702360471
Offset: 1
- R. Witula, D. Slota, Quasi-Fibonacci Numbers of Order 11, 10 (2007), Article 07.8.5.
- Harry J. Smith, Table of n, a(n) for n=1,...,200
- L. E. Jeffery, Unit-primitive matrices
- R. Wituła, D. Słota, Quasi-Fibonacci Numbers of Order 11, Journal of Integer Sequences, Vol. 10 (2007), Article 07.8.5
- Index entries for linear recurrences with constant coefficients, signature (4, -2, -5, 2, 1).
-
Digits := 1000:q := seq(floor(evalf((1-2*cos(1/11*Pi))^n+(1+2*cos(2/11*Pi))^n+(1-2*cos(3/11*Pi))^n+(1+2*cos(4/11*Pi))^n+(1-2*cos(5/11*Pi))^n)),n=1..50);
-
a[n_] := (1 - 2*Cos[Pi/11])^n + (2*Cos[(2*Pi)/11] + 1)^n + (1 - 2*Sin[Pi/22])^n + (2*Sin[(3*Pi)/22] + 1)^n + (1 - 2*Sin[(5*Pi)/22])^n; Table[a[n] // FullSimplify, {n, 1, 26}] (* Jean-François Alcover, Mar 26 2013 *)
u = {{0, 0, 1, 0, 0}, {0, 1, 0, 1, 0}, {1, 0, 1, 0, 1}, {0, 1, 0, 1, 1}, {0, 0, 1, 1, 1}}; a[n_] := Tr[MatrixPower[u, n]]; Table[a[n], {n, 1, 26}] (* Jean-François Alcover, Oct 16 2013, after L. Edson Jeffery *)
LinearRecurrence[{4,-2,-5,2,1},{4,12,25,64,159},30] (* Harvey P. Dale, Dec 30 2024 *)
-
{ default(realprecision, 200); for (n=1, 200, a=(1 - 2*cos(1/11*Pi))^n + (1 + 2*cos(2/11*Pi))^n + (1 - 2*cos(3/11*Pi))^n + (1 + 2*cos(4/11*Pi))^n + (1 - 2*cos(5/11*Pi))^n; write("b062883.txt", n, " ", round(a)) ) } \\ Harry J. Smith, Aug 12 2009
G.f. proposed by Maksym Voznyy checked and corrected by
R. J. Mathar, Sep 16 2009
A120747
Sequence relating to the 11-gon (or hendecagon).
Original entry on oeis.org
0, 1, 4, 14, 50, 175, 616, 2163, 7601, 26703, 93819, 329615, 1158052, 4068623, 14294449, 50221212, 176444054, 619907431, 2177943781, 7651850657, 26883530748, 94450905714, 331837870408, 1165858298498, 4096053203771, 14390815650209, 50559786403254
Offset: 1
From _Johannes W. Meijer_, Aug 03 2011: (Start)
The lengths of the regular hendecagon edge and diagonals are:
r[1] = 1.000000000, r[2] = 1.918985948, r[3] = 2.682507066,
r[4] = 3.228707416, r[5] = 3.513337092.
The first few rows of the T(n,k) array are, n>=1, 1 <= k <=5:
0, 0, 0, 0, 1, ...
1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, ...
5, 9, 12, 14, 15, ...
15, 29, 41, 50, 55, ...
55, 105, 146, 175, 190, ...
190, 365, 511, 616, 671, ... (End)
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Jay Kappraff, Slavik Jablan, Gary W. Adamson and Radmila Sazdanovich, Golden Fields, Generalized Fibonacci Sequences and Chaotic Matrices, Forma, Vol. 19 No. 4, pp. 367-387, 2004.
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31, MR 1439165
- Eric Weisstein's World of Mathematics, Hendecagon.
- Index entries for linear recurrences with constant coefficients, signature (3,3,-4,-1,1).
Cf.
A006358 (T(n+2,1) and T(n+1,5)),
A069006 (T(n+1,2)),
A038342 (T(n+1,3)), this sequence (T(n,4)) (m=5: hendecagon or 11-gon).
-
R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x^2*(1+x-x^2)/(1-3*x-3*x^2+4*x^3+x^4-x^5) )); // G. C. Greubel, Nov 13 2022
-
nmax:=27: m:=5: for k from 1 to m-1 do T(1,k):=0 od: T(1,m):=1: for n from 2 to nmax do for k from 1 to m do T(n,k):= add(T(n-1,k1), k1=m-k+1..m) od: od: for n from 1 to nmax/3 do seq(T(n,k), k=1..m) od; for n from 1 to nmax do a(n):=T(n,4) od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Aug 03 2011
-
LinearRecurrence[{3, 3, -4, -1, 1}, {0, 1, 4, 14, 50}, 41] (* G. C. Greubel, Nov 13 2022 *)
-
def A120747_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x*(1+x-x^2)/(1-3*x-3*x^2+4*x^3+x^4-x^5) ).list()
A120747_list(40) # G. C. Greubel, Nov 13 2022
A215492
a(n) = 21*a(n-2) + 7*a(n-3), with a(0)=0, a(1)=3, and a(2)=6.
Original entry on oeis.org
0, 3, 6, 63, 147, 1365, 3528, 29694, 83643, 648270, 1964361, 14199171, 45789471, 311933118, 1060973088, 6871121775, 24463966674, 151720368891, 561841152579, 3357375513429, 12860706786396, 74437773850062, 293576471108319, 1653218198356074, 6686170310225133
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (0, 21, 7).
Cf.
A121458,
A215484,
A121449,
A085810,
A215404,
A077998,
A006054,
A033304,
A052975,
A094789,
A005021,
A121442,
A121458.
-
I:=[0,3,6]; [n le 3 select I[n] else 21*Self(n-2)+7*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 18 2015
-
LinearRecurrence[{0,21,7}, {0,3,6}, 50]
CoefficientList[Series[(3 x + 6 x^2)/(1 - 21 x^2 - 7 x^3), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 18 2015 *)
-
concat(0,Vec((3+6*x)/(1-21*x^2-7*x^3)+O(x^99))) \\ Charles R Greathouse IV, Oct 01 2012
Showing 1-10 of 18 results.
Comments