A274663
Sum of n-th powers of the roots of x^3 + 4*x^2 - 11*x - 1.
Original entry on oeis.org
3, -4, 38, -193, 1186, -6829, 40169, -234609, 1373466, -8034394, 47011093, -275049240, 1609284589, -9415668903, 55089756851, -322322100748, 1885860059450, -11033893589177, 64557712909910, -377717821061137, 2209972232664381, -12930227249420121
Offset: 0
-
RecurrenceTable[{a[0] == 3, a[1] == -4, a[2] == 38, a[n] == -4 a[n - 1] + 11 a[n - 2] + a[n - 3]}, a, {n, 0, 20}] (* Michael De Vlieger, Jul 02 2016 *)
LinearRecurrence[{-4,11,1},{3,-4,38},30] (* Harvey P. Dale, Dec 28 2022 *)
-
polsym(x^3 + 4*x^2 - 11*x - 1, 21)
-
Vec((3+8*x-11*x^2)/(1+4*x-11*x^2-x^3) + O(x^99)) \\ Altug Alkan, Jul 08 2016
A320918
Sum of n-th powers of the roots of x^3 + 9*x^2 + 20*x - 1.
Original entry on oeis.org
3, -9, 41, -186, 845, -3844, 17510, -79865, 364741, -1667859, 7636046, -35002493, 160633658, -738017016, 3394477491, -15629323441, 72036344133, -332346150886, 1534759151873, -7093873005004, 32817327856690, -151943731458257, 704053152985509, -3264786419847751
Offset: 0
-
a := proc(n) option remember; if n < 3 then [3, -9, 41][n+1] else
-9*a(n-1) - 20*a(n-2) + a(n-3) fi end: seq(a(n), n=0..32); # Peter Luschny, Oct 25 2018
-
CoefficientList[Series[(3 + 18*x + 20*x^2) / (1 + 9*x + 20*x^2 - x^3) , {x, 0, 50}], x] (* Amiram Eldar, Dec 09 2018 *)
LinearRecurrence[{-9,-20,1},{3,-9,41},30] (* Harvey P. Dale, Dec 10 2023 *)
-
polsym(x^3 + 9*x^2 + 20*x - 1, 25) \\ Joerg Arndt, Oct 24 2018
-
Vec((3 + 18*x + 20*x^2) / (1 + 9*x + 20*x^2 - x^3) + O(x^30)) \\ Colin Barker, Dec 09 2018
A287396
a(n) = (7*(csc(2*Pi/7))^2)^n + (7*(csc(4*Pi/7))^2)^n + (7*(csc(8*Pi/7))^2)^n.
Original entry on oeis.org
3, 56, 1568, 53312, 1931776, 71300096, 2645479424, 98305622016, 3654656065536, 135885355483136, 5052615982317568, 187873377732526080, 6985794697679601664, 259756778648305139712, 9658687473893481906176, 359144636249686988029952, 13354285908291066433372160
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..600
- Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2Pi/7, J. Integer Seq., 12 (2009), Article 09.8.5.
- Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6
- Roman Witula and Damian Slota, Quasi-Fibonacci Numbers of Order 11, Journal of Integer Sequences, Vol. 10 (2007), Article 07.8.5
- Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (56,-784,3136).
-
LinearRecurrence[{56,-784,3136},{3,56,1568},30] (* Harvey P. Dale, Aug 08 2017 *)
-
Vec((3 - 28*x)*(1 - 28*x) / (1 - 56*x + 784*x^2 - 3136*x^3) + O(x^30)) \\ Colin Barker, May 25 2017
-
polsym(x^3 - 56*x^2 + 784* x - 3136, 20) \\ Joerg Arndt, May 26 2017
A287405
a(n) = (7*(cot(1*Pi/7))^2)^n + (7*(cot(2*Pi/7))^2)^n + (7*(cot(4*Pi/7))^2)^n.
Original entry on oeis.org
3, 35, 931, 27587, 830403, 25054435, 756187747, 22824258947, 688917131651, 20793986742179, 627637106311971, 18944339609269571, 571808137046942019, 17259221092289630307, 520945214725090792931, 15723995613526902256387, 474606601742375424297731
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..650
- Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2Pi/7, J. Integer Seq., 12 (2009), Article 09.8.5.
- Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6.
- Index entries for linear recurrences with constant coefficients, signature (35,-147,49).
-
LinearRecurrence[{35,-147,49},{3,35,931},30] (* Harvey P. Dale, Mar 15 2018 *)
-
Vec((3 - 7*x)*(1 - 21*x) / (1 - 35*x + 147*x^2 - 49*x^3) + O(x^30)) \\ Colin Barker, May 26 2017
-
polsym(x^3 - 35*x^2 + 147*x - 49, 20) \\ Joerg Arndt, May 26 2017
A322460
Sum of n-th powers of the roots of x^3 + 95*x^2 - 88*x - 1.
Original entry on oeis.org
3, -95, 9201, -882452, 84642533, -8118687210, 778722945402, -74693039645137, 7164358266796181, -687186244111463849, 65913082025027484446, -6322208017501153044901, 606409425694567846432994, -58165183833442021851601272, 5579050171430096545235179411
Offset: 0
Similar sequences with (h,k) values:
A215076 (0,1),
A274220 (1,0),
A274663 (1,1),
A248417 (1,2),
A215560 (2,1).
-
seq(coeff(series((3+190*x-88*x^2)/(1+95*x-88*x^2-x^3),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Dec 11 2018
-
LinearRecurrence[{-95, 88, 1}, {3, -95, 9201}, 50] (* Amiram Eldar, Dec 09 2018 *)
-
Vec((3 + 190*x - 88*x^2) / (1 + 95*x - 88*x^2 - x^3) + O(x^15)) \\ Colin Barker, Dec 09 2018
-
polsym(x^3 + 95*x^2 - 88*x - 1, 25) \\ Joerg Arndt, Dec 17 2018
Showing 1-5 of 5 results.
Comments