A274664
Sum of n-th powers of the roots of x^3 + 11*x^2 - 4*x - 1.
Original entry on oeis.org
3, -11, 129, -1460, 165655, -187926, 2131986, -24186985, 274396853, -3112981337, 35316195134, -400655674969, 4545364223858, -51566312967180, 585010243859443, -6636832570098735, 75293632933556677, -854192282305658944, 9690652804526376357, -109938656346079219026, 1247233638742671255770
Offset: 0
-
Vec((3+22*x-4*x^2+149090*x^4+1639990*x^5-596360*x^6-149090*x^7) / (1+11*x-4*x^2-x^3) + O(x^20)) \\ Colin Barker, Jul 03 2016
-
first(n)=my(x='x); polsym(x^3+11*x^2-4*x-1,n) \\ Charles R Greathouse IV, Jul 10 2016
A320918
Sum of n-th powers of the roots of x^3 + 9*x^2 + 20*x - 1.
Original entry on oeis.org
3, -9, 41, -186, 845, -3844, 17510, -79865, 364741, -1667859, 7636046, -35002493, 160633658, -738017016, 3394477491, -15629323441, 72036344133, -332346150886, 1534759151873, -7093873005004, 32817327856690, -151943731458257, 704053152985509, -3264786419847751
Offset: 0
-
a := proc(n) option remember; if n < 3 then [3, -9, 41][n+1] else
-9*a(n-1) - 20*a(n-2) + a(n-3) fi end: seq(a(n), n=0..32); # Peter Luschny, Oct 25 2018
-
CoefficientList[Series[(3 + 18*x + 20*x^2) / (1 + 9*x + 20*x^2 - x^3) , {x, 0, 50}], x] (* Amiram Eldar, Dec 09 2018 *)
LinearRecurrence[{-9,-20,1},{3,-9,41},30] (* Harvey P. Dale, Dec 10 2023 *)
-
polsym(x^3 + 9*x^2 + 20*x - 1, 25) \\ Joerg Arndt, Oct 24 2018
-
Vec((3 + 18*x + 20*x^2) / (1 + 9*x + 20*x^2 - x^3) + O(x^30)) \\ Colin Barker, Dec 09 2018
A322460
Sum of n-th powers of the roots of x^3 + 95*x^2 - 88*x - 1.
Original entry on oeis.org
3, -95, 9201, -882452, 84642533, -8118687210, 778722945402, -74693039645137, 7164358266796181, -687186244111463849, 65913082025027484446, -6322208017501153044901, 606409425694567846432994, -58165183833442021851601272, 5579050171430096545235179411
Offset: 0
Similar sequences with (h,k) values:
A215076 (0,1),
A274220 (1,0),
A274663 (1,1),
A248417 (1,2),
A215560 (2,1).
-
seq(coeff(series((3+190*x-88*x^2)/(1+95*x-88*x^2-x^3),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Dec 11 2018
-
LinearRecurrence[{-95, 88, 1}, {3, -95, 9201}, 50] (* Amiram Eldar, Dec 09 2018 *)
-
Vec((3 + 190*x - 88*x^2) / (1 + 95*x - 88*x^2 - x^3) + O(x^15)) \\ Colin Barker, Dec 09 2018
-
polsym(x^3 + 95*x^2 - 88*x - 1, 25) \\ Joerg Arndt, Dec 17 2018
Showing 1-3 of 3 results.
Comments