A038197
4-wave sequence.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 4, 7, 9, 10, 19, 26, 30, 56, 75, 85, 160, 216, 246, 462, 622, 707, 1329, 1791, 2037, 3828, 5157, 5864, 11021, 14849, 16886, 31735, 42756, 48620, 91376, 123111, 139997, 263108, 354484, 403104, 757588, 1020696, 1160693, 2181389
Offset: 0
The first few rows of the T(n,k) array are, n>=1, 1 <= k <=4:
0, 0, 0, 1
1, 1, 1, 1
1, 2, 3, 4
4, 7, 9, 10
10, 19, 26, 30
30, 56, 75, 85
85, 160, 216, 246
- F. v. Lamoen, Wave sequences
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
- Eric Weisstein's World of Mathematics, Nonagon.
- Index entries for linear recurrences with constant coefficients, signature (1,-1,3,-3,3,0,0,0,-1,1,-1).
Cf.
A120747 (m = 5: hendecagon or 11-gon)
-
m:=4: nmax:=15: for k from 1 to m-1 do T(1,k):=0 od: T(1,m):=1: for n from 2 to nmax do for k from 1 to m do T(n,k):= add(T(n-1,k1), k1=m-k+1..m) od: od: for n from 1 to nmax/2 do seq(T(n,k), k=1..m) od; a(0):=1: Tx:=1: for n from 2 to nmax do for k from 2 to m do a(Tx):= T(n,k): Tx:=Tx+1: od: od: seq(a(n), n=0..Tx-1); # Johannes W. Meijer, Aug 03 2011
-
LinearRecurrence[{1,-1,3,-3,3,0,0,0,-1,1,-1},{1,1,1,1,2,3,4,7,9,10,19},50] (* Harvey P. Dale, Oct 02 2015 *)
A038201
5-wave sequence.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 3, 4, 5, 9, 12, 14, 15, 29, 41, 50, 55, 105, 146, 175, 190, 365, 511, 616, 671, 1287, 1798, 2163, 2353, 4516, 6314, 7601, 8272, 15873, 22187, 26703, 29056, 55759, 77946, 93819, 102091, 195910, 273856, 329615, 358671, 688286, 962142
Offset: 0
The first few rows of the T(n,k) array are, n>=1, 1 <= k <=5:
0, 0, 0, 0, 1
1, 1, 1, 1, 1
1, 2, 3, 4, 5
5, 9, 12, 14, 15
15, 29, 41, 50, 55
55, 105, 146, 175, 190
190, 365, 511, 616, 671
G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 9*x^8 + 12*x^9 + ...
- D. E. Knuth, Art of Computer Programming, Vol. 3, Sect. 5.4.3, Eq. (1).
- F. v. Lamoen, Wave sequences
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
- Eric Weisstein's World of Mathematics, Hendecagon.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,0,0,0,3,0,0,0,-4,0,0,0,-1,0,0,0,1).
-
m:=5: nmax:=12: for k from 1 to m-1 do T(1,k):=0 od: T(1,m):=1: for n from 2 to nmax do for k from 1 to m do T(n,k):= add(T(n-1,k1), k1=m-k+1..m) od: od: for n from 1 to nmax/2 do seq(T(n,k), k=1..m) od; a(0):=1: Tx:=1: for n from 2 to nmax do for k from 2 to m do a(Tx):= T(n,k): Tx:=Tx+1: od: od: seq(a(n), n=0..Tx-1); # Johannes W. Meijer, Aug 03 2011
-
LinearRecurrence[{0,0,0,3,0,0,0,3,0,0,0,-4,0,0,0,-1,0,0,0,1},{1,1,1,1,1,2,3,4,5,9,12,14,15,29,41,50,55,105,146,175},50] (* Harvey P. Dale, Dec 13 2012 *)
-
{a(n) = local(m); if( n<=0, n==0, m = (n-1)\4 * 4; sum(k=2*m - n, m, a(k)))};
A069009
Let M denote the 6 X 6 matrix with rows / 1,1,1,1,1,1 / 1,1,1,1,1,0 / 1,1,1,1,0,0 / 1,1,1,0,0,0 / 1,1,0,0,0,0 / 1,0,0,0,0,0 / and A(n) the vector (x(n),y(n),z(n),t(n),u(n),v(n)) = M^n*A where A is the vector (1,1,1,1,1,1); then a(n) = t(n).
Original entry on oeis.org
1, 3, 15, 59, 250, 1030, 4283, 17752, 73658, 305513, 1267344, 5257031, 21806850, 90457205, 375227042, 1556484658, 6456477531, 26782210229, 111095686086, 460837670465, 1911607611040, 7929568022610, 32892759309540
Offset: 0
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
- Index entries for linear recurrences with constant coefficients, signature (3, 6, -4, -5, 1, 1).
Cf.
A006359,
A069007,
A069008,
A069009,
A070778,
A006359 (offset), for x(n), y(n), z(n), t(n), u(n), v(n).
Cf.
A120747 (m = 5: hendecagon or 11-gon)
-
nmax:=22: with(LinearAlgebra): M:=Matrix([[1,1,1,1,1,1], [1,1,1,1,1,0], [1,1,1,1,0,0], [1,1,1,0,0,0], [1,1,0,0,0,0], [1,0,0,0,0,0]]): v:= Vector[row]([1,1,1,1,1,1]): for n from 0 to nmax do b:=evalm(v&*M^n); a(n):=b[4] od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Aug 03 2011
nmax:=24: m:=6: for k from 1 to m-1 do T(1,k):=0 od: T(1,m):=1: for n from 2 to nmax do for k from 1 to m do T(n,k):= add(T(n-1,k1), k1=m-k+1..m) od: od: for n from 1 to nmax/3 do seq(T(n,k), k=1..m) od; for n from 2 to nmax do a(n-2):=T(n,3) od: seq(a(n), n=0..nmax-2); # Johannes W. Meijer, Aug 03 2011
-
b = {1, -3, -6, 4, 5, -1, -1}; p[x_] := Sum[x^(n - 1)*b[[8 - n]], {n, 1, 7}] q[x_] := ExpandAll[x^6*p[1/x]] Table[ SeriesCoefficient[ Series[x/q[x], {x, 0, 30}], n], {n, 0, 30}] (* Roger L. Bagula and Gary W. Adamson, Sep 19 2006 *)
CoefficientList[Series[1/(1 - 3 x - 6 x^2 + 4 x^3 + 5 x^4 - x^5 - x^6), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 19 2015 *)
-
Vec(1/(1-3*x-6*x^2+4*x^3+5*x^4-x^5-x^6)+O(x^33)) \\ Joerg Arndt, Sep 19 2015
Showing 1-3 of 3 results.
Comments