cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A038197 4-wave sequence.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 7, 9, 10, 19, 26, 30, 56, 75, 85, 160, 216, 246, 462, 622, 707, 1329, 1791, 2037, 3828, 5157, 5864, 11021, 14849, 16886, 31735, 42756, 48620, 91376, 123111, 139997, 263108, 354484, 403104, 757588, 1020696, 1160693, 2181389
Offset: 0

Views

Author

Keywords

Comments

This sequence is related to the nonagon or 9-gon.

Examples

			The first few rows of the T(n,k) array are, n>=1, 1 <= k <=4:
  0,  0,   0,   1
  1,  1,   1,   1
  1,  2,   3,   4
  4,  7,   9,   10
  10, 19,  26,  30
  30, 56,  75,  85
  85, 160, 216, 246
		

Crossrefs

The a(3*n) lead to A006357; The T(n,k) lead to A076264 and A091024.
Cf. A120747 (m = 5: hendecagon or 11-gon)

Programs

  • Maple
    m:=4: nmax:=15: for k from 1 to m-1 do T(1,k):=0 od: T(1,m):=1: for n from 2 to nmax do for k from 1 to m do T(n,k):= add(T(n-1,k1), k1=m-k+1..m) od: od: for n from 1 to nmax/2 do seq(T(n,k), k=1..m) od; a(0):=1: Tx:=1: for n from 2 to nmax do for k from 2 to m do a(Tx):= T(n,k): Tx:=Tx+1: od: od: seq(a(n), n=0..Tx-1); # Johannes W. Meijer, Aug 03 2011
  • Mathematica
    LinearRecurrence[{1,-1,3,-3,3,0,0,0,-1,1,-1},{1,1,1,1,2,3,4,7,9,10,19},50] (* Harvey P. Dale, Oct 02 2015 *)

Formula

a(n) = a(n-1)+a(n-2) if n=3*m+1, a(n) = a(n-1)+a(n-4) if n=3*m+2, a(n) = a(n-1)+a(n-6) if n=3*m. Also: a(n) = 2*a(n-3)+3*a(n-6)-a(n-9)-a(n-12).
G.f.: -(-1-x-x^2+x^3-x^5+x^6)/(1-2*x^3-3*x^6+x^9+x^12)
a(n-1) = sequence(sequence(T(n,k), k=2..4), n>=2) with a(0)=1; T(n,k) = sum(T(n-1,k1), k1 = 5-k..4) with T(1,1) = T(1,2) = T(1,3) = 0 and T(1,4) = 1; n>=1 and 1 <= k <= 4. [Steinbach]

Extensions

Edited by Floor van Lamoen, Feb 05 2002
Edited and information added by Johannes W. Meijer, Aug 03 2011

A038201 5-wave sequence.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 9, 12, 14, 15, 29, 41, 50, 55, 105, 146, 175, 190, 365, 511, 616, 671, 1287, 1798, 2163, 2353, 4516, 6314, 7601, 8272, 15873, 22187, 26703, 29056, 55759, 77946, 93819, 102091, 195910, 273856, 329615, 358671, 688286, 962142
Offset: 0

Views

Author

Keywords

Comments

This sequence is related to the hendecagon or 11-gon, see A120747.
Sequence of perfect distributions for a cascade merge with six tapes according to Knuth. - Michael Somos, Feb 07 2004

Examples

			The first few rows of the T(n,k) array are, n>=1, 1 <= k <=5:
  0,   0,   0,   0,   1
  1,   1,   1,   1,   1
  1,   2,   3,   4,   5
  5,   9,   12,  14,  15
  15,  29,  41,  50,  55
  55,  105, 146, 175, 190
  190, 365, 511, 616, 671
G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 9*x^8 + 12*x^9 + ...
		

References

  • D. E. Knuth, Art of Computer Programming, Vol. 3, Sect. 5.4.3, Eq. (1).

Crossrefs

The a(4*n) values (column 0) lead to A006358; the T(n,k) lead to A069006, A038342 and A120747.

Programs

  • Maple
    m:=5: nmax:=12: for k from 1 to m-1 do T(1,k):=0 od: T(1,m):=1: for n from 2 to nmax do for k from 1 to m do T(n,k):= add(T(n-1,k1), k1=m-k+1..m) od: od: for n from 1 to nmax/2 do seq(T(n,k), k=1..m) od; a(0):=1: Tx:=1: for n from 2 to nmax do for k from 2 to m do a(Tx):= T(n,k): Tx:=Tx+1: od: od: seq(a(n), n=0..Tx-1); # Johannes W. Meijer, Aug 03 2011
  • Mathematica
    LinearRecurrence[{0,0,0,3,0,0,0,3,0,0,0,-4,0,0,0,-1,0,0,0,1},{1,1,1,1,1,2,3,4,5,9,12,14,15,29,41,50,55,105,146,175},50] (* Harvey P. Dale, Dec 13 2012 *)
  • PARI
    {a(n) = local(m); if( n<=0, n==0, m = (n-1)\4 * 4; sum(k=2*m - n, m, a(k)))};

Formula

a(n) = a(n-1)+a(n-2) if n=4*m+1, a(n) = a(n-1)+a(n-4) if n=4*m+2, a(n) = a(n-1)+a(n-6) if n=4*m+3 and a(n) = a(n-1)+a(n-8) if n=4*m.
G.f.: -(1+x+x^2+x^3-2*x^4-x^5+x^7-x^8-x^11+x^12)/(-1+3*x^4+3*x^8-4*x^12-x^16+x^20).
a(n) = 3*a(n-4)+3*a(n-8)-4*a(n-12)-a(n-16)+a(n-20).
a(n-1) = sequence(sequence(T(n,k), k=2..5), n>=2) with a(0)=1; T(n,k) = sum(T(n-1,k1), k1 = 6-k..5) with T(1,1) = T(1,2) = T(1,3) = T(1,4) = 0 and T(1,5) = 1; n>=1 and 1 <= k <= 5. [Steinbach]

Extensions

Edited by Floor van Lamoen, Feb 05 2002
Edited and information added by Johannes W. Meijer, Aug 03 2011

A069009 Let M denote the 6 X 6 matrix with rows / 1,1,1,1,1,1 / 1,1,1,1,1,0 / 1,1,1,1,0,0 / 1,1,1,0,0,0 / 1,1,0,0,0,0 / 1,0,0,0,0,0 / and A(n) the vector (x(n),y(n),z(n),t(n),u(n),v(n)) = M^n*A where A is the vector (1,1,1,1,1,1); then a(n) = t(n).

Original entry on oeis.org

1, 3, 15, 59, 250, 1030, 4283, 17752, 73658, 305513, 1267344, 5257031, 21806850, 90457205, 375227042, 1556484658, 6456477531, 26782210229, 111095686086, 460837670465, 1911607611040, 7929568022610, 32892759309540
Offset: 0

Views

Author

Benoit Cloitre, Apr 02 2002

Keywords

Comments

This sequence is related to the tridecagon or triskaidecagon (13-gon).
The lengths of the diagonals of the regular tridecagon are r[k] = sin(k*Pi/13)/sin(Pi/13), 1 <= k <= 6, where r[1] = 1 is the length of the edge.

Crossrefs

Cf. A066170.
Cf. A006359, A069007, A069008, A069009, A070778, A006359 (offset), for x(n), y(n), z(n), t(n), u(n), v(n).
Cf. A120747 (m = 5: hendecagon or 11-gon)

Programs

  • Maple
    nmax:=22: with(LinearAlgebra): M:=Matrix([[1,1,1,1,1,1], [1,1,1,1,1,0], [1,1,1,1,0,0], [1,1,1,0,0,0], [1,1,0,0,0,0], [1,0,0,0,0,0]]): v:= Vector[row]([1,1,1,1,1,1]): for n from 0 to nmax do b:=evalm(v&*M^n); a(n):=b[4] od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Aug 03 2011
    nmax:=24: m:=6: for k from 1 to m-1 do T(1,k):=0 od: T(1,m):=1: for n from 2 to nmax do for k from 1 to m do T(n,k):= add(T(n-1,k1), k1=m-k+1..m) od: od: for n from 1 to nmax/3 do seq(T(n,k), k=1..m) od; for n from 2 to nmax do a(n-2):=T(n,3) od: seq(a(n), n=0..nmax-2); # Johannes W. Meijer, Aug 03 2011
  • Mathematica
    b = {1, -3, -6, 4, 5, -1, -1}; p[x_] := Sum[x^(n - 1)*b[[8 - n]], {n, 1, 7}] q[x_] := ExpandAll[x^6*p[1/x]] Table[ SeriesCoefficient[ Series[x/q[x], {x, 0, 30}], n], {n, 0, 30}] (* Roger L. Bagula and Gary W. Adamson, Sep 19 2006 *)
    CoefficientList[Series[1/(1 - 3 x - 6 x^2 + 4 x^3 + 5 x^4 - x^5 - x^6), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 19 2015 *)
  • PARI
    Vec(1/(1-3*x-6*x^2+4*x^3+5*x^4-x^5-x^6)+O(x^33)) \\ Joerg Arndt, Sep 19 2015

Formula

G.f.: 1/(1-3*x-6*x^2+4*x^3+5*x^4-x^5-x^6). - Roger L. Bagula and Gary W. Adamson, Sep 19 2006
a(n-2) = T(n,3) with T(n,k) = sum(T(n-1,k1), k1=7-k..6), T(1,1) = T(1,2) = T(1,3) = T(1,4) = T(1,5) = 0 and T(1,6) = 1, n>=1 and 1 <= k <= 6. [Steinbach]
sum(T(n,k)*r[k], k=1..6) = r[6]^n, n>=1, with r[k] = sin(k*Pi/13)/sin(Pi/13). [Steinbach]

Extensions

Edited by Henry Bottomley, May 06 2002
Information added by Johannes W. Meijer, Aug 03 2011
Showing 1-3 of 3 results.