cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A069006 Let M denote the 5 X 5 matrix with rows /1,1,1,1,1/1,1,1,1,0/1,1,1,0,0/1,1,0,0,0/1,0,0,0,0/ and A(n) = vector (x(n),y(n),z(n),t(n),u(n)) = M^n*A where A is the vector (1,1,1,1,1); then a(n) = t(n).

Original entry on oeis.org

1, 2, 9, 29, 105, 365, 1287, 4516, 15873, 55759, 195910, 688286, 2418195, 8495917, 29849041, 104869718, 368442700, 1294463368, 4547886208, 15978257251, 56137003923, 197228218022, 692929213991, 2434493909304, 8553197751125
Offset: 0

Views

Author

Benoit Cloitre, Apr 02 2002

Keywords

Comments

a(n-1) (with a(-1) = 0) appears in the formula for 1/rho(11)^n, n >= 0, with rho(11) = 2*cos(Pi/11) (the length ratio (smallest diagonal)/side in the regular 11-gon), when written in the power basis of the degree 5 number field Q(rho(11)): 1/rho(11)^n = A038342(n)*1 + A230080*rho(11) - A230081(n)*rho(11)^2 - a(n-1)*rho(11)^3 + A038342(n-1)* rho(11)^4, n >= 0, with A038342(-1) = 0. See A230080 with the example for n=4. - Wolfdieter Lang, Nov 04 2013

Crossrefs

Cf. A006359, A069007, A069008, A069009, A070778, A006359(offset), for x(n), y(n), z(n), t(n), u(n), v(n).
A038342, A230080, A230081 (for powers of 1/rho(11), see a comment above).

Programs

  • Mathematica
    LinearRecurrence[{3,3,-4,-1,1},{1,2,9,29,105},30] (* Harvey P. Dale, Apr 16 2015 *)

Formula

G.f.:(1-x)/(1-x^5+x^4+4*x^3-3*x^2-3*x). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009
a(n) = 3*a(n-1) + 3*a(n-2) - 4*a(n-3) - a(n-4) + a(n-5), n >= 0, with a(-5)=0, a(-4)=-1, a(-3)=a(-2)=a(-1)=0. - Wolfdieter Lang, Nov 04 2013

Extensions

Edited by Henry Bottomley, May 06 2002

A069007 Let M denote the 6 X 6 matrix with rows /1,1,1,1,1,1/1,1,1,1,1,0/1,1,1,1,0,0/1,1,1,0,0,0/1,1,0,0,0,0/1,0,0,0,0,0/ and A(n) the vector (x(n),y(n),z(n),t(n),u(n),v(n)) = M^n*A where A is the vector (1,1,1,1,1,1); then a(n) = y(n).

Original entry on oeis.org

1, 5, 20, 85, 350, 1456, 6034, 25038, 103849, 430794, 1786960, 7412548, 30748055, 127546530, 529077571, 2194674687, 9103762600, 37763453591, 156647144355, 649790354877, 2695405055655, 11180849888139, 46379450073255
Offset: 0

Views

Author

Benoit Cloitre, Apr 02 2002

Keywords

Crossrefs

Cf. A006359, A069007, A069008, A069009, A070778, A006359 (offset), for x(n), y(n), z(n), t(n), u(n), v(n).

Programs

  • Maple
    a:= n->(Matrix(6, (i, j)->`if`(i+j>7, 0, 1))^n.<<[1$6][]>>)[2, 1]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 18 2013
  • Mathematica
    m = Table[ If[i + j <= 7, 1, 0], {i, 1, 6}, {j, 1, 6}]; mp[n_] := MatrixPower[m, n].m[[1]]; a[n_] := mp[n][[2]]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Jun 18 2013 *)

Formula

G.f.: (x^3+x^2-2*x-1) / (x^6+x^5-5*x^4-4*x^3+6*x^2+3*x-1). [Colin Barker, Dec 13 2012]

Extensions

Edited by Henry Bottomley, May 06 2002

A069008 Let M denote the 6 X 6 matrix with rows /1,1,1,1,1,1/1,1,1,1,1,0/1,1,1,1,0,0/1,1,1,0,0,0/1,1,0,0,0,0/1,0,0,0,0,0/ and A(n) the vector (x(n),y(n),z(n),t(n),u(n),v(n)) = M^n*A where A is the vector (1,1,1,1,1,1); then a(n) = z(n).

Original entry on oeis.org

1, 4, 18, 74, 309, 1280, 5313, 22035, 91410, 379171, 1572857, 6524375, 27063881, 112264055, 465684247, 1931711700, 8012962189, 33238687760, 137877896315, 571933356551, 2372445281505, 9841175633650, 40822327332150, 169335704473650, 702423959724591
Offset: 0

Views

Author

Benoit Cloitre, Apr 02 2002

Keywords

Crossrefs

Cf. A006359, A069007, A069008, A069009, A070778, A006359 (offset), for x(n), y(n), z(n), t(n), u(n), v(n).

Programs

  • Maple
    a:= n->(Matrix(6, (i, j)->`if`(i+j>7, 0, 1))^n.<<[1$6][]>>)[3, 1]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 14 2013
  • Mathematica
    m = Table[ If[i + j <= 7, 1, 0], {i, 1, 6}, {j, 1, 6}]; mp[n_] := MatrixPower[m, n].m[[1]]; a[n_] := mp[n][[3]]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Jun 18 2013 *)

Formula

G.f.: -(x+1) / (x^6+x^5-5*x^4-4*x^3+6*x^2+3*x-1). - Colin Barker, Jun 14 2013

Extensions

Edited by Henry Bottomley, May 06 2002

A070778 Let M denote the 6 X 6 matrix = row by row /1,1,1,1,1,1/1,1,1,1,1,0/1,1,1,1,0,0/1,1,1,0,0,0/1,1,0,0,0,0/1,0,0,0,0,0/ and A(n) the vector (x(n),y(n),z(n),t(n),u(n),v(n)) = M^n*A where A is the vector (1,1,1,1,1,1); then a(n) = u(n).

Original entry on oeis.org

1, 2, 11, 41, 176, 721, 3003, 12439, 51623, 214103, 888173, 3684174, 15282475, 63393324, 262962987, 1090800411, 4524765831, 18769248040, 77856998326, 322959774150, 1339674254489, 5557122741105, 23051583675890, 95620617831960, 396645310086831, 1645330322871807
Offset: 0

Views

Author

Henry Bottomley, May 06 2002

Keywords

Crossrefs

Cf. A006359, A069007, A069008, A069009, A070778, A006359 (offset), for x(n), y(n), z(n), t(n), u(n), v(n).

Programs

  • Magma
    I:=[1,2,11,41,176,721]; [n le 6 select I[n] else 3*Self(n-1)+6*Self(n-2)-4*Self(n-3)-5*Self(n-4)+Self(n-5)+Self(n-6): n in [1..30]]; // Vincenzo Librandi, Oct 10 2017
  • Maple
    a:= n-> (Matrix(6, (i, j)->`if`(i+j>7, 0, 1))^n.<<[1$6][]>>)[5, 1]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 14 2013
  • Mathematica
    CoefficientList[Series[(x^2 + x - 1)/(x^6 + x^5 - 5*x^4 - 4*x^3 + 6*x^2 + 3*x - 1), {x, 0, 30}], x] (* Wesley Ivan Hurt, Oct 09 2017 *)
    LinearRecurrence[{3, 6, -4, -5, 1, 1}, {1, 2, 11, 41, 176, 721}, 30] (* Vincenzo Librandi, Oct 10 2017 *)

Formula

a(n) = 2*A006359(n-1) - A006359(n-3) for n > 2.
G.f.: (x^2 + x - 1) / (x^6 + x^5 - 5*x^4 - 4*x^3 + 6*x^2 + 3*x - 1). - Colin Barker, Jun 14 2013
a(n) = 3*a(n-1) + 6*a(n-2) - 4*a(n-3) - 5*a(n-4) + a(n-5) + a(n-6). - Wesley Ivan Hurt, Oct 09 2017

A120747 Sequence relating to the 11-gon (or hendecagon).

Original entry on oeis.org

0, 1, 4, 14, 50, 175, 616, 2163, 7601, 26703, 93819, 329615, 1158052, 4068623, 14294449, 50221212, 176444054, 619907431, 2177943781, 7651850657, 26883530748, 94450905714, 331837870408, 1165858298498, 4096053203771, 14390815650209, 50559786403254
Offset: 1

Views

Author

Gary W. Adamson, Jul 01 2006

Keywords

Comments

The hendecagon is an 11-sided polygon. The preferred word in the OEIS is 11-gon.
The lengths of the diagonals of the regular 11-gon are r[k] = sin(k*Pi/11)/sin(Pi/11), 1 <= k <= 5, where r[1] = 1 is the length of the edge.
The value of limit(a(n)/a(n-1),n=infinity) equals the longest diagonal r[5].
The a(n) equal the matrix elements M^n[1,2], where M = Matrix([[1,1,1,1,1], [1,1,1,1,0], [1,1,1,0,0], [1,1,0,0,0], [1,0,0,0,0]]). The characteristic polynomial of M is (x^5 - 3x^4 - 3x^3 + 4x^2 + x - 1) with roots x1 = -r[4]/r[3], x2 = -r[2]/r[4], x3 = r[1]/r[2], x4 = r[3]/r[5] and x5 = r[5]/r[1].
Note that M^4*[1,0,0,0,0] = [55, 50, 41, 29, 15] which are all terms of the 5-wave sequence A038201. This is also the case for the terms of M^n*[1,0,0,0,0], n>=1.

Examples

			From _Johannes W. Meijer_, Aug 03 2011: (Start)
The lengths of the regular hendecagon edge and diagonals are:
  r[1] = 1.000000000, r[2] = 1.918985948, r[3] = 2.682507066,
  r[4] = 3.228707416, r[5] = 3.513337092.
The first few rows of the T(n,k) array are, n>=1, 1 <= k <=5:
    0,   0,   0,   0,   1, ...
    1,   1,   1,   1,   1, ...
    1,   2,   3,   4,   5, ...
    5,   9,  12,  14,  15, ...
   15,  29,  41,  50,  55, ...
   55, 105, 146, 175, 190, ...
  190, 365, 511, 616, 671, ... (End)
		

Crossrefs

From Johannes W. Meijer, Aug 03 2011: (Start)
Cf. A006358 (T(n+2,1) and T(n+1,5)), A069006 (T(n+1,2)), A038342 (T(n+1,3)), this sequence (T(n,4)) (m=5: hendecagon or 11-gon).
Cf. A000045 (m=2; pentagon or 5-gon); A006356, A006054 and A038196 (m=3: heptagon or 7-gon); A006357, A076264, A091024 and A038197 (m=4: enneagon or 9-gon); A006359, A069007, A069008, A069009, A070778 (m=6; tridecagon or 13-gon); A025030 (m=7: pentadecagon or 15-gon); A030112 (m=8: heptadecagon or 17-gon). (End)

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x^2*(1+x-x^2)/(1-3*x-3*x^2+4*x^3+x^4-x^5) )); // G. C. Greubel, Nov 13 2022
    
  • Maple
    nmax:=27: m:=5: for k from 1 to m-1 do T(1,k):=0 od: T(1,m):=1: for n from 2 to nmax do for k from 1 to m do T(n,k):= add(T(n-1,k1), k1=m-k+1..m) od: od: for n from 1 to nmax/3 do seq(T(n,k), k=1..m) od; for n from 1 to nmax do a(n):=T(n,4) od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Aug 03 2011
  • Mathematica
    LinearRecurrence[{3, 3, -4, -1, 1}, {0, 1, 4, 14, 50}, 41] (* G. C. Greubel, Nov 13 2022 *)
  • SageMath
    def A120747_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+x-x^2)/(1-3*x-3*x^2+4*x^3+x^4-x^5) ).list()
    A120747_list(40) # G. C. Greubel, Nov 13 2022

Formula

a(n) = 3*a(n-1) + 3*a(n-2) - 4*a(n-3) - a(n-4) + a(n-5).
G.f.: x^2*(1+x-x^2)/(1-3*x-3*x^2+4*x^3+x^4-x^5). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009
From Johannes W. Meijer, Aug 03 2011: (Start)
a(n) = T(n,4) with T(n,k) = Sum_{k1 = 6-k..6} T(n-1, k1), T(1,1) = T(1,2) = T(1,3) = T(1,4) = 0 and T(1,5) = 1, n>=1 and 1 <= k <= 5. [Steinbach]
Sum_{k=1..5} T(n,k)*r[k] = r[5]^n, n>=1. [Steinbach]
r[k] = sin(k*Pi/11)/sin(Pi/11), 1 <= k <= 5. [Kappraff]
Sum_{k=1..5} T(n,k) = A006358(n-1).
Limit_{n -> 00} T(n,k)/T(n-1,k) = r[5], 1 <= k <= 5.
sequence(sequence( T(n,k), k=2..5), n>=1) = A038201(n-4).
G.f.: (x^2*(x - x1)*(x - x2))/((x - x3)*(x - x4)*(x - x5)*(x - x6)*(x - x7)) with x1 = phi, x2 = (1-phi), x3 = r[1] - r[3], x4 = r[3] - r[5], x5 = r[5] - r[4], x6 = r[4] - r[2], x7 = r[2], where phi = (1 + sqrt(5))/2 is the golden ratio A001622. (End)

Extensions

Edited and information added by Johannes W. Meijer, Aug 03 2011
Showing 1-5 of 5 results.