A038235
Bottom line of 4-wave sequence A038197, also bisection of A006357.
Original entry on oeis.org
1, 10, 85, 707, 5864, 48620, 403104, 3342081, 27708726, 229729153, 1904652103, 15791202736, 130922641160, 1085461206128, 8999406210929, 74612811302754, 618604325665341, 5128761469382475, 42521840081752984, 352542596245147348
Offset: 0
-
LinearRecurrence[{10,-15,7,-1},{1,10,85,707},20] (* Harvey P. Dale, Nov 24 2019 *)
-
k=4; M(k)=matrix(k,k,i,j,min(i,j)); v(k)=vector(k,i,1); a(n)=vecmax(v(k)*M(k)^n)
A038237
Second line of 4-wave sequence A038197.
Original entry on oeis.org
1, 3, 7, 26, 56, 216, 462, 1791, 3828, 14849, 31735, 123111, 263108, 1020696, 2181389, 8462447, 18085587, 70160958, 149945056, 581694636, 1243173370, 4822748423, 10306975580, 39984728949, 85453685055, 331507764639, 708484485384, 2748484256480, 5873945233705
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..700
- F. v. Lamoen, Wave sequences
- Index entries for linear recurrences with constant coefficients, signature (0,10,0,-15,0,7,0,-1).
-
a:= n-> (Matrix([[26, 7, 3, 1, 0, 0, -1, -1]]). Matrix(8, (i,j)-> if i=j-1 then 1 elif j=1 then [0, 10, 0, -15, 0, 7, 0, -1][i] else 0 fi)^n)[1,4]: seq (a(n), n=0..30); # Alois P. Heinz, Jul 16 2009
A038225
Top line of 4-wave sequence A038197, also bisection of A006357.
Original entry on oeis.org
1, 4, 30, 246, 2037, 16886, 139997, 1160693, 9623140, 79784098, 661478734, 5484227157, 45468956106, 376976720745, 3125460977225, 25912757426660, 214839027697334, 1781200165693270, 14767680082482085, 122436758775876478
Offset: 0
-
k=4; M(k)=matrix(k,k,i,j,min(i,j)); v(k)=vector(k,i,1); a(n)=vecmin(v(k)*M(k)^n)
A038249
Third line of 4-wave sequence A038197.
Original entry on oeis.org
1, 2, 9, 19, 75, 160, 622, 1329, 5157, 11021, 42756, 91376, 354484, 757588, 2938977, 6281058, 24366645, 52075371, 202020427, 431749580, 1674922950, 3579575053, 13886550633, 29677753369, 115131438424, 246054079584, 954538564968
Offset: 0
-
a:= n-> (Matrix([[ `if`(irem(n,2)=0, 1, 2), 0, 0, 1]]). Matrix(4, (i,j)-> if i=j-1 then 1 elif j=1 then [10, -15, 7, -1][i] else 0 fi)^iquo(n, 2))[1,1]: seq(a(n), n=0..30); # Alois P. Heinz, Jul 16 2009
A006357
Number of distributive lattices; also number of paths with n turns when light is reflected from 4 glass plates.
Original entry on oeis.org
1, 4, 10, 30, 85, 246, 707, 2037, 5864, 16886, 48620, 139997, 403104, 1160693, 3342081, 9623140, 27708726, 79784098, 229729153, 661478734, 1904652103, 5484227157, 15791202736, 45468956106, 130922641160, 376976720745, 1085461206128, 3125460977225
Offset: 0
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).
- J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..200
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
- Emma L. L. Gao, Sergey Kitaev, and Philip B. Zhang, Pattern-avoiding alternating words, arXiv:1505.04078 [math.CO], 2015.
- Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (2,3,-1,-1).
-
LinearRecurrence[{2,3,-1,-1},{1,4,10,30},30] (* Harvey P. Dale, Nov 18 2013 *)
-
a(n)=local(p=4);polcoeff(sum(k=0,p-1,(-1)^((k+1)\2)*binomial((p+k-1)\2,k)* (-x)^k)/sum(k=0,p,(-1)^((k+1)\2)*binomial((p+k)\2,k)*x^k+x*O(x^n)),n) \\ Paul D. Hanna
Recurrence, alternative description from Jacques Haubrich (jhaubrich(AT)freeler.nl)
A038196
3-wave sequence starting with 1, 1, 1.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 6, 11, 14, 25, 31, 56, 70, 126, 157, 283, 353, 636, 793, 1429, 1782, 3211, 4004, 7215, 8997, 16212, 20216, 36428, 45425, 81853, 102069, 183922, 229347, 413269, 515338, 928607, 1157954, 2086561, 2601899, 4688460, 5846414
Offset: 0
- J. Kappraff, Beyond Measure, World Scientific, Inc. 2002, p. 497.
-
a(n)=if(n>-1,polcoeff((1+x-x^2)/(1-2*x^2-x^4+x^6)+x*O(x^n),n),if(n<-3,polcoeff((1-x-x^2)/(1-x^2-2*x^4+x^6)+O(x^(-3-n)),-4-n),0))
A038201
5-wave sequence.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 3, 4, 5, 9, 12, 14, 15, 29, 41, 50, 55, 105, 146, 175, 190, 365, 511, 616, 671, 1287, 1798, 2163, 2353, 4516, 6314, 7601, 8272, 15873, 22187, 26703, 29056, 55759, 77946, 93819, 102091, 195910, 273856, 329615, 358671, 688286, 962142
Offset: 0
The first few rows of the T(n,k) array are, n>=1, 1 <= k <=5:
0, 0, 0, 0, 1
1, 1, 1, 1, 1
1, 2, 3, 4, 5
5, 9, 12, 14, 15
15, 29, 41, 50, 55
55, 105, 146, 175, 190
190, 365, 511, 616, 671
G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 9*x^8 + 12*x^9 + ...
- D. E. Knuth, Art of Computer Programming, Vol. 3, Sect. 5.4.3, Eq. (1).
- F. v. Lamoen, Wave sequences
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
- Eric Weisstein's World of Mathematics, Hendecagon.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,0,0,0,3,0,0,0,-4,0,0,0,-1,0,0,0,1).
-
m:=5: nmax:=12: for k from 1 to m-1 do T(1,k):=0 od: T(1,m):=1: for n from 2 to nmax do for k from 1 to m do T(n,k):= add(T(n-1,k1), k1=m-k+1..m) od: od: for n from 1 to nmax/2 do seq(T(n,k), k=1..m) od; a(0):=1: Tx:=1: for n from 2 to nmax do for k from 2 to m do a(Tx):= T(n,k): Tx:=Tx+1: od: od: seq(a(n), n=0..Tx-1); # Johannes W. Meijer, Aug 03 2011
-
LinearRecurrence[{0,0,0,3,0,0,0,3,0,0,0,-4,0,0,0,-1,0,0,0,1},{1,1,1,1,1,2,3,4,5,9,12,14,15,29,41,50,55,105,146,175},50] (* Harvey P. Dale, Dec 13 2012 *)
-
{a(n) = local(m); if( n<=0, n==0, m = (n-1)\4 * 4; sum(k=2*m - n, m, a(k)))};
A120747
Sequence relating to the 11-gon (or hendecagon).
Original entry on oeis.org
0, 1, 4, 14, 50, 175, 616, 2163, 7601, 26703, 93819, 329615, 1158052, 4068623, 14294449, 50221212, 176444054, 619907431, 2177943781, 7651850657, 26883530748, 94450905714, 331837870408, 1165858298498, 4096053203771, 14390815650209, 50559786403254
Offset: 1
From _Johannes W. Meijer_, Aug 03 2011: (Start)
The lengths of the regular hendecagon edge and diagonals are:
r[1] = 1.000000000, r[2] = 1.918985948, r[3] = 2.682507066,
r[4] = 3.228707416, r[5] = 3.513337092.
The first few rows of the T(n,k) array are, n>=1, 1 <= k <=5:
0, 0, 0, 0, 1, ...
1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, ...
5, 9, 12, 14, 15, ...
15, 29, 41, 50, 55, ...
55, 105, 146, 175, 190, ...
190, 365, 511, 616, 671, ... (End)
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Jay Kappraff, Slavik Jablan, Gary W. Adamson and Radmila Sazdanovich, Golden Fields, Generalized Fibonacci Sequences and Chaotic Matrices, Forma, Vol. 19 No. 4, pp. 367-387, 2004.
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31, MR 1439165
- Eric Weisstein's World of Mathematics, Hendecagon.
- Index entries for linear recurrences with constant coefficients, signature (3,3,-4,-1,1).
Cf.
A006358 (T(n+2,1) and T(n+1,5)),
A069006 (T(n+1,2)),
A038342 (T(n+1,3)), this sequence (T(n,4)) (m=5: hendecagon or 11-gon).
-
R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x^2*(1+x-x^2)/(1-3*x-3*x^2+4*x^3+x^4-x^5) )); // G. C. Greubel, Nov 13 2022
-
nmax:=27: m:=5: for k from 1 to m-1 do T(1,k):=0 od: T(1,m):=1: for n from 2 to nmax do for k from 1 to m do T(n,k):= add(T(n-1,k1), k1=m-k+1..m) od: od: for n from 1 to nmax/3 do seq(T(n,k), k=1..m) od; for n from 1 to nmax do a(n):=T(n,4) od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Aug 03 2011
-
LinearRecurrence[{3, 3, -4, -1, 1}, {0, 1, 4, 14, 50}, 41] (* G. C. Greubel, Nov 13 2022 *)
-
def A120747_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x*(1+x-x^2)/(1-3*x-3*x^2+4*x^3+x^4-x^5) ).list()
A120747_list(40) # G. C. Greubel, Nov 13 2022
A187503
Let i be in {1,2,3,4} and let r >= 0 be an integer. Let p = {p_1, p_2, p_3, p_4} = {-1,0,1,2}, n=3*r+p_i, and define a(-1)=1. Then a(n)=a(3*r+p_i) gives the quantity of H_(9,1,0) tiles in a subdivided H_(9,i,r) tile after linear scaling by the factor Q^r, where Q=sqrt(x^3-2*x) with x=2*cos(Pi/9).
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 3, 4, 7, 9, 10, 19, 26, 30, 56, 75, 85, 160, 216, 246, 462, 622, 707, 1329, 1791, 2037, 3828, 5157, 5864, 11021, 14849, 16886, 31735, 42756, 48620, 91376, 123111, 139997, 263108, 354484, 403104, 757588, 1020696, 1160693
Offset: 0
A187506
Let i be in {1,2,3,4} and let r >= 0 be an integer. Let p = {p_1, p_2, p_3, p_4} = {-1,0,1,2}, n=3*r+p_i, and define a(-1)=0. Then a(n)=a(3*r+p_i) gives the quantity of H_(9,4,0) tiles in a subdivided H_(9,i,r) tile after linear scaling by the factor Q^r, where Q=sqrt(x^3-2*x) with x=2*cos(Pi/9).
Original entry on oeis.org
0, 0, 1, 1, 1, 1, 2, 3, 4, 7, 9, 10, 19, 26, 30, 56, 75, 85, 160, 216, 246, 462, 622, 707, 1329, 1791, 2037, 3828, 5157, 5864, 11021, 14849, 16886, 31735, 42756, 48620, 91376, 123111, 139997, 263108, 354484, 403104, 757588, 1020696, 1160693, 2181389
Offset: 0
- L. E. Jeffery, Unit-primitive matrices and rhombus substitution tilings, (in preparation).
- Index entries for linear recurrences with constant coefficients, signature (1,-1,3,-3,3,0,0,0,-1,1,-1).
-
LinearRecurrence[{1,-1,3,-3,3,0,0,0,-1,1,-1},{0,0,1,1,1,1,2,3,4,7,9},50] (* Harvey P. Dale, May 19 2015 *)
Showing 1-10 of 12 results.
Comments