cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A038235 Bottom line of 4-wave sequence A038197, also bisection of A006357.

Original entry on oeis.org

1, 10, 85, 707, 5864, 48620, 403104, 3342081, 27708726, 229729153, 1904652103, 15791202736, 130922641160, 1085461206128, 8999406210929, 74612811302754, 618604325665341, 5128761469382475, 42521840081752984, 352542596245147348
Offset: 0

Views

Author

Keywords

Programs

  • Mathematica
    LinearRecurrence[{10,-15,7,-1},{1,10,85,707},20] (* Harvey P. Dale, Nov 24 2019 *)
  • PARI
    k=4; M(k)=matrix(k,k,i,j,min(i,j)); v(k)=vector(k,i,1); a(n)=vecmax(v(k)*M(k)^n)

Formula

Let v(4)=(1, 1, 1, 1), let M(4) be the 4 X 4 matrix m(i, j) = min(i, j); then a(n) = max(v(4)*M(4)^n). - Benoit Cloitre, Oct 03 2002
From Floor van Lamoen, Sep 13 2006: (Start)
a(n) = 10a(n-1) - 15a(n-2) + 7a(n-3) - a(n-4).
G.f.: 1/(1 - 10x + 15x^2 - 7x^3 + x^4). (End)

A038237 Second line of 4-wave sequence A038197.

Original entry on oeis.org

1, 3, 7, 26, 56, 216, 462, 1791, 3828, 14849, 31735, 123111, 263108, 1020696, 2181389, 8462447, 18085587, 70160958, 149945056, 581694636, 1243173370, 4822748423, 10306975580, 39984728949, 85453685055, 331507764639, 708484485384, 2748484256480, 5873945233705
Offset: 0

Views

Author

Keywords

Programs

  • Maple
    a:= n-> (Matrix([[26, 7, 3, 1, 0, 0, -1, -1]]). Matrix(8, (i,j)-> if i=j-1 then 1 elif j=1 then [0, 10, 0, -15, 0, 7, 0, -1][i] else 0 fi)^n)[1,4]: seq (a(n), n=0..30);  # Alois P. Heinz, Jul 16 2009

Formula

G.f.: (x^5+x^4-4*x^3-3*x^2+3*x+1)/(x^8-7*x^6+15*x^4-10*x^2+1). - Alois P. Heinz, Jul 16 2009

A038225 Top line of 4-wave sequence A038197, also bisection of A006357.

Original entry on oeis.org

1, 4, 30, 246, 2037, 16886, 139997, 1160693, 9623140, 79784098, 661478734, 5484227157, 45468956106, 376976720745, 3125460977225, 25912757426660, 214839027697334, 1781200165693270, 14767680082482085, 122436758775876478
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    k=4; M(k)=matrix(k,k,i,j,min(i,j)); v(k)=vector(k,i,1); a(n)=vecmin(v(k)*M(k)^n)

Formula

Let v(4) = (1, 1, 1, 1), let M(4) be the 4 X 4 matrix m(i, j) = min(i, j); then a(n) = min(v(4)*M(4)^n). - Benoit Cloitre, Oct 03 2002
G.f.: ( 1-6*x+5*x^2-x^3 ) / ( (x-1)*(x^3-6*x^2+9*x-1) ). - Wouter Meeussen, Mar 19 2005

A038249 Third line of 4-wave sequence A038197.

Original entry on oeis.org

1, 2, 9, 19, 75, 160, 622, 1329, 5157, 11021, 42756, 91376, 354484, 757588, 2938977, 6281058, 24366645, 52075371, 202020427, 431749580, 1674922950, 3579575053, 13886550633, 29677753369, 115131438424, 246054079584, 954538564968
Offset: 0

Views

Author

Keywords

Programs

  • Maple
    a:= n-> (Matrix([[ `if`(irem(n,2)=0, 1, 2), 0, 0, 1]]). Matrix(4, (i,j)-> if i=j-1 then 1 elif j=1 then [10, -15, 7, -1][i] else 0 fi)^iquo(n, 2))[1,1]: seq(a(n), n=0..30); # Alois P. Heinz, Jul 16 2009

Formula

G.f.: (-x^3-x^2+2*x+1) / (x^8-7*x^6+15*x^4-10*x^2+1). - Alois P. Heinz, Jul 16 2009

A006357 Number of distributive lattices; also number of paths with n turns when light is reflected from 4 glass plates.

Original entry on oeis.org

1, 4, 10, 30, 85, 246, 707, 2037, 5864, 16886, 48620, 139997, 403104, 1160693, 3342081, 9623140, 27708726, 79784098, 229729153, 661478734, 1904652103, 5484227157, 15791202736, 45468956106, 130922641160, 376976720745, 1085461206128, 3125460977225
Offset: 0

Views

Author

Keywords

Comments

Let M denotes the 4 X 4 matrix = row by row (1,1,1,1)(1,1,1,0)(1,1,0,0)(1,0,0,0) and A(n) the vector (x(n),y(n),z(n),t(n))=M^n*A where A is the vector (1,1,1,1) then a(n)=x(n). - Benoit Cloitre, Apr 02 2002
In general, the g.f. for p glass plates is A(x) = F_{p-1}(-x)/F_p(x) where F_p(x) = Sum_{k=0,p} (-1)^[(k+1)/2]*C([(p+k)/2],k)*x^k. - Paul D. Hanna, Feb 06 2006
a(n)/a(n-1) tends to 2.879385..., the longest diagonal of a nonagon with edge 1; or: sin(4*Pi/9)/sin(Pi/9). The sequence is the INVERT transform of (1, 3, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...). - Gary W. Adamson, Jul 16 2015

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).
  • J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,3,-1,-1},{1,4,10,30},30] (* Harvey P. Dale, Nov 18 2013 *)
  • PARI
    a(n)=local(p=4);polcoeff(sum(k=0,p-1,(-1)^((k+1)\2)*binomial((p+k-1)\2,k)* (-x)^k)/sum(k=0,p,(-1)^((k+1)\2)*binomial((p+k)\2,k)*x^k+x*O(x^n)),n) \\ Paul D. Hanna

Formula

G.f.: (1 + 2*x - x^2 - x^3)/( (1 +x)*(1 -3*x +x^3) ). - Simon Plouffe in his 1992 dissertation
a(n) = 2*a(n-1) + 3*a(n-2) - a(n-3) - a(n-4).
a(n) is asymptotic to z(4)*w(4)^n where w(4) = (1/2)/cos(4*Pi/9) and z(4) is the root 1 < x < 2 of P(4, X) = 1 + 27*X - 324*X^2 + 243*X^3. - Benoit Cloitre, Oct 16 2002
Binomial transform of A122167(unsigned): (1, 3, 3, 11, 10, 40, 33, 146, ...). - Gary W. Adamson, Nov 24 2007
G.f.: 1/(-x-1/(-x-1/(-x-1/(-x-1)))). - Paul Barry, Mar 24 2010

Extensions

Recurrence, alternative description from Jacques Haubrich (jhaubrich(AT)freeler.nl)
More terms from James Sellers, Dec 24 1999
More terms from Paul D. Hanna, Feb 06 2006

A038196 3-wave sequence starting with 1, 1, 1.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 11, 14, 25, 31, 56, 70, 126, 157, 283, 353, 636, 793, 1429, 1782, 3211, 4004, 7215, 8997, 16212, 20216, 36428, 45425, 81853, 102069, 183922, 229347, 413269, 515338, 928607, 1157954, 2086561, 2601899, 4688460, 5846414
Offset: 0

Views

Author

Keywords

Comments

The 3-wave sequence with initial values a, b, c is formed by the following construction:
a.......a+b+c............3a+5b+6c...
..b...b+c...a+2b+2c..2a+4b+5c...
....c..........a+2b+3c...

References

  • J. Kappraff, Beyond Measure, World Scientific, Inc. 2002, p. 497.

Crossrefs

a(2n) forms A006356, a(2n+1) ("the middle row") forms A006054. Cf. A038197, A038201, A187070.

Programs

  • PARI
    a(n)=if(n>-1,polcoeff((1+x-x^2)/(1-2*x^2-x^4+x^6)+x*O(x^n),n),if(n<-3,polcoeff((1-x-x^2)/(1-x^2-2*x^4+x^6)+O(x^(-3-n)),-4-n),0))

Formula

a(n) = a(n-1) + a(n-2) if n is odd,
a(n) = a(n-1) + a(n-4) if n is even.
Also: a(n) = 2*a(n-2) + a(n-4) - a(n-6).
G.f.: (1 + x - x^2)/(1 - 2*x^2 - x^4 + x^6).

Extensions

Edited by Floor van Lamoen, Feb 05 2002

A038201 5-wave sequence.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 9, 12, 14, 15, 29, 41, 50, 55, 105, 146, 175, 190, 365, 511, 616, 671, 1287, 1798, 2163, 2353, 4516, 6314, 7601, 8272, 15873, 22187, 26703, 29056, 55759, 77946, 93819, 102091, 195910, 273856, 329615, 358671, 688286, 962142
Offset: 0

Views

Author

Keywords

Comments

This sequence is related to the hendecagon or 11-gon, see A120747.
Sequence of perfect distributions for a cascade merge with six tapes according to Knuth. - Michael Somos, Feb 07 2004

Examples

			The first few rows of the T(n,k) array are, n>=1, 1 <= k <=5:
  0,   0,   0,   0,   1
  1,   1,   1,   1,   1
  1,   2,   3,   4,   5
  5,   9,   12,  14,  15
  15,  29,  41,  50,  55
  55,  105, 146, 175, 190
  190, 365, 511, 616, 671
G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 9*x^8 + 12*x^9 + ...
		

References

  • D. E. Knuth, Art of Computer Programming, Vol. 3, Sect. 5.4.3, Eq. (1).

Crossrefs

The a(4*n) values (column 0) lead to A006358; the T(n,k) lead to A069006, A038342 and A120747.

Programs

  • Maple
    m:=5: nmax:=12: for k from 1 to m-1 do T(1,k):=0 od: T(1,m):=1: for n from 2 to nmax do for k from 1 to m do T(n,k):= add(T(n-1,k1), k1=m-k+1..m) od: od: for n from 1 to nmax/2 do seq(T(n,k), k=1..m) od; a(0):=1: Tx:=1: for n from 2 to nmax do for k from 2 to m do a(Tx):= T(n,k): Tx:=Tx+1: od: od: seq(a(n), n=0..Tx-1); # Johannes W. Meijer, Aug 03 2011
  • Mathematica
    LinearRecurrence[{0,0,0,3,0,0,0,3,0,0,0,-4,0,0,0,-1,0,0,0,1},{1,1,1,1,1,2,3,4,5,9,12,14,15,29,41,50,55,105,146,175},50] (* Harvey P. Dale, Dec 13 2012 *)
  • PARI
    {a(n) = local(m); if( n<=0, n==0, m = (n-1)\4 * 4; sum(k=2*m - n, m, a(k)))};

Formula

a(n) = a(n-1)+a(n-2) if n=4*m+1, a(n) = a(n-1)+a(n-4) if n=4*m+2, a(n) = a(n-1)+a(n-6) if n=4*m+3 and a(n) = a(n-1)+a(n-8) if n=4*m.
G.f.: -(1+x+x^2+x^3-2*x^4-x^5+x^7-x^8-x^11+x^12)/(-1+3*x^4+3*x^8-4*x^12-x^16+x^20).
a(n) = 3*a(n-4)+3*a(n-8)-4*a(n-12)-a(n-16)+a(n-20).
a(n-1) = sequence(sequence(T(n,k), k=2..5), n>=2) with a(0)=1; T(n,k) = sum(T(n-1,k1), k1 = 6-k..5) with T(1,1) = T(1,2) = T(1,3) = T(1,4) = 0 and T(1,5) = 1; n>=1 and 1 <= k <= 5. [Steinbach]

Extensions

Edited by Floor van Lamoen, Feb 05 2002
Edited and information added by Johannes W. Meijer, Aug 03 2011

A120747 Sequence relating to the 11-gon (or hendecagon).

Original entry on oeis.org

0, 1, 4, 14, 50, 175, 616, 2163, 7601, 26703, 93819, 329615, 1158052, 4068623, 14294449, 50221212, 176444054, 619907431, 2177943781, 7651850657, 26883530748, 94450905714, 331837870408, 1165858298498, 4096053203771, 14390815650209, 50559786403254
Offset: 1

Views

Author

Gary W. Adamson, Jul 01 2006

Keywords

Comments

The hendecagon is an 11-sided polygon. The preferred word in the OEIS is 11-gon.
The lengths of the diagonals of the regular 11-gon are r[k] = sin(k*Pi/11)/sin(Pi/11), 1 <= k <= 5, where r[1] = 1 is the length of the edge.
The value of limit(a(n)/a(n-1),n=infinity) equals the longest diagonal r[5].
The a(n) equal the matrix elements M^n[1,2], where M = Matrix([[1,1,1,1,1], [1,1,1,1,0], [1,1,1,0,0], [1,1,0,0,0], [1,0,0,0,0]]). The characteristic polynomial of M is (x^5 - 3x^4 - 3x^3 + 4x^2 + x - 1) with roots x1 = -r[4]/r[3], x2 = -r[2]/r[4], x3 = r[1]/r[2], x4 = r[3]/r[5] and x5 = r[5]/r[1].
Note that M^4*[1,0,0,0,0] = [55, 50, 41, 29, 15] which are all terms of the 5-wave sequence A038201. This is also the case for the terms of M^n*[1,0,0,0,0], n>=1.

Examples

			From _Johannes W. Meijer_, Aug 03 2011: (Start)
The lengths of the regular hendecagon edge and diagonals are:
  r[1] = 1.000000000, r[2] = 1.918985948, r[3] = 2.682507066,
  r[4] = 3.228707416, r[5] = 3.513337092.
The first few rows of the T(n,k) array are, n>=1, 1 <= k <=5:
    0,   0,   0,   0,   1, ...
    1,   1,   1,   1,   1, ...
    1,   2,   3,   4,   5, ...
    5,   9,  12,  14,  15, ...
   15,  29,  41,  50,  55, ...
   55, 105, 146, 175, 190, ...
  190, 365, 511, 616, 671, ... (End)
		

Crossrefs

From Johannes W. Meijer, Aug 03 2011: (Start)
Cf. A006358 (T(n+2,1) and T(n+1,5)), A069006 (T(n+1,2)), A038342 (T(n+1,3)), this sequence (T(n,4)) (m=5: hendecagon or 11-gon).
Cf. A000045 (m=2; pentagon or 5-gon); A006356, A006054 and A038196 (m=3: heptagon or 7-gon); A006357, A076264, A091024 and A038197 (m=4: enneagon or 9-gon); A006359, A069007, A069008, A069009, A070778 (m=6; tridecagon or 13-gon); A025030 (m=7: pentadecagon or 15-gon); A030112 (m=8: heptadecagon or 17-gon). (End)

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x^2*(1+x-x^2)/(1-3*x-3*x^2+4*x^3+x^4-x^5) )); // G. C. Greubel, Nov 13 2022
    
  • Maple
    nmax:=27: m:=5: for k from 1 to m-1 do T(1,k):=0 od: T(1,m):=1: for n from 2 to nmax do for k from 1 to m do T(n,k):= add(T(n-1,k1), k1=m-k+1..m) od: od: for n from 1 to nmax/3 do seq(T(n,k), k=1..m) od; for n from 1 to nmax do a(n):=T(n,4) od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Aug 03 2011
  • Mathematica
    LinearRecurrence[{3, 3, -4, -1, 1}, {0, 1, 4, 14, 50}, 41] (* G. C. Greubel, Nov 13 2022 *)
  • SageMath
    def A120747_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+x-x^2)/(1-3*x-3*x^2+4*x^3+x^4-x^5) ).list()
    A120747_list(40) # G. C. Greubel, Nov 13 2022

Formula

a(n) = 3*a(n-1) + 3*a(n-2) - 4*a(n-3) - a(n-4) + a(n-5).
G.f.: x^2*(1+x-x^2)/(1-3*x-3*x^2+4*x^3+x^4-x^5). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009
From Johannes W. Meijer, Aug 03 2011: (Start)
a(n) = T(n,4) with T(n,k) = Sum_{k1 = 6-k..6} T(n-1, k1), T(1,1) = T(1,2) = T(1,3) = T(1,4) = 0 and T(1,5) = 1, n>=1 and 1 <= k <= 5. [Steinbach]
Sum_{k=1..5} T(n,k)*r[k] = r[5]^n, n>=1. [Steinbach]
r[k] = sin(k*Pi/11)/sin(Pi/11), 1 <= k <= 5. [Kappraff]
Sum_{k=1..5} T(n,k) = A006358(n-1).
Limit_{n -> 00} T(n,k)/T(n-1,k) = r[5], 1 <= k <= 5.
sequence(sequence( T(n,k), k=2..5), n>=1) = A038201(n-4).
G.f.: (x^2*(x - x1)*(x - x2))/((x - x3)*(x - x4)*(x - x5)*(x - x6)*(x - x7)) with x1 = phi, x2 = (1-phi), x3 = r[1] - r[3], x4 = r[3] - r[5], x5 = r[5] - r[4], x6 = r[4] - r[2], x7 = r[2], where phi = (1 + sqrt(5))/2 is the golden ratio A001622. (End)

Extensions

Edited and information added by Johannes W. Meijer, Aug 03 2011

A187503 Let i be in {1,2,3,4} and let r >= 0 be an integer. Let p = {p_1, p_2, p_3, p_4} = {-1,0,1,2}, n=3*r+p_i, and define a(-1)=1. Then a(n)=a(3*r+p_i) gives the quantity of H_(9,1,0) tiles in a subdivided H_(9,i,r) tile after linear scaling by the factor Q^r, where Q=sqrt(x^3-2*x) with x=2*cos(Pi/9).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 3, 4, 7, 9, 10, 19, 26, 30, 56, 75, 85, 160, 216, 246, 462, 622, 707, 1329, 1791, 2037, 3828, 5157, 5864, 11021, 14849, 16886, 31735, 42756, 48620, 91376, 123111, 139997, 263108, 354484, 403104, 757588, 1020696, 1160693
Offset: 0

Views

Author

L. Edson Jeffery, Mar 15 2011

Keywords

Comments

See A187506 for supporting theory. Define the matrix
U_3 = (0 0 0 1)
(0 0 1 1)
(0 1 1 1)
(1 1 1 1). Let r>=0 and M=(m_(i,j))=(U_3)^r, i,j=1,2,3,4. Let A_r be the r-th "block" defined by A_r={a(3*r-1),a(3*r),a(3*r+1),a(3*r+2)} with a(-1)=1. Note that A_r-2*A_(r-1)-3*A_(r-2)+A_(r-3)+A_(r-4)={0,0,0,0}, for r>=4. Let p={p_1,p_2,p_3,p_4}={-1,0,1,2} and n=3*r+p_i. Then a(n)=a(3*r+p_i)=m_(i,1), where M=(m_(i,j))=(U_3)^r was defined above. Hence the block A_r corresponds component-wise to the first column of M, and a(3*r+p_i)=m_(i,1) gives the quantity of H_(9,1,0) tiles that should appear in a subdivided H_(9,i,r) tile.
Since a(3*r+2)=a(3*(r+1)-1) for all r, this sequence arises by concatenation of first-column entries m_(2,1), m_(3,1) and m_(4,1) of M=(U_3)^r.
This sequence is a nontrivial extension of both A038197 and A187506.

Crossrefs

Formula

Recurrence: a(n)=2*a(n-3)+3*a(n-6)-a(n-9)-a(n-12), for n>=12, with initial conditions {a(k)}={0,0,0,0,0,1,1,1,1,2,3,4}, k=0,1,...,11.
G.f.: x^5(1+x+x^2-x^3+x^5-x^6)/(1-2*x^3-3*x^6+x^9+x^12).

A187506 Let i be in {1,2,3,4} and let r >= 0 be an integer. Let p = {p_1, p_2, p_3, p_4} = {-1,0,1,2}, n=3*r+p_i, and define a(-1)=0. Then a(n)=a(3*r+p_i) gives the quantity of H_(9,4,0) tiles in a subdivided H_(9,i,r) tile after linear scaling by the factor Q^r, where Q=sqrt(x^3-2*x) with x=2*cos(Pi/9).

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 2, 3, 4, 7, 9, 10, 19, 26, 30, 56, 75, 85, 160, 216, 246, 462, 622, 707, 1329, 1791, 2037, 3828, 5157, 5864, 11021, 14849, 16886, 31735, 42756, 48620, 91376, 123111, 139997, 263108, 354484, 403104, 757588, 1020696, 1160693, 2181389
Offset: 0

Views

Author

L. Edson Jeffery, Mar 10 2011

Keywords

Comments

Theory. (Start)
1. Definitions. Let T_(9,j,0) denote the rhombus with sides of unit length (=1), interior angles given by the pair (j*Pi/9,(9-j)*Pi/9) and Area(T_(9,j,0))=sin(j*Pi/9), j in {1,2,3,4}. Associated with T_(9,j,0) are its angle coefficients (j, 9-j) in which one coefficient is even while the other is odd. A half-tile is created by cutting T_(9,j,0) along a line extending between its two corners with even angle coefficient; let H_(9,j,0) denote this half-tile. Similarly, a T_(9,j,r) tile is a linearly scaled version of T_(9,j,0) with sides of length Q^r and Area(T_(9,j,r))=Q^(2*r)*sin(j*Pi/9), r>=0 an integer, where Q is the positive, constant square root Q=sqrt(x^3-2*x) with x=2*cos(Pi/9); likewise let H_(9,j,r) denote the corresponding half-tile. Often H_(9,i,r) (i in {1,2,3,4}) can be subdivided into an integral number of each equivalence class H_(9,j,0). But regardless of whether or not H_(9,j,r) subdivides, in theory such a proposed subdivision for each j can be represented by the matrix M=(m_(i,j)), i,j=1,2,3,4, in which the entry m_(i,j) gives the quantity of H_(9,j,0) tiles that should be present in a subdivided H_(9,i,r) tile. The number Q^(2*r) (the square of the scaling factor) is an eigenvalue of M=(U_3)^r, where
U_3=
(0 0 0 1)
(0 0 1 1)
(0 1 1 1)
(1 1 1 1).
2. The sequence. Let r>=0, and let D_r be the r-th "block" defined by D_r={a(3*r-1),a(3*r),a(3*r+1),a(3*r+2)} with a(-1)=0. Note that D_r-2*D_(r-1)-3*D_(r-2)+D_(r-3)+D_(r-4)={0,0,0,0}, for r>=4. Let p={p_1,p_2,p_3,p_4}={-1,0,1,2} and n=3*r+p_i. Then a(n)=a(3*r+p_i)=m_(i,4), where M=(m_(i,j))=(U_3)^r was defined above. Hence the block D_r corresponds component-wise to the fourth column of M, and a(3*r+p_i)=m_(i,4) gives the quantity of H_(9,4,0) tiles that should appear in a subdivided H_(9,i,r) tile. (End)
Combining blocks A_r, B_r, C_r and D_r, from A187503, A187504, A187505 and this sequence, respectively, as matrix columns [A_r,B_r,C_r,D_r] generates the matrix (U_3)^r, and a negative index (-1)*r yields the corresponding inverse [A_(-r),B_(-r),C_(-r),D(-r)]=(U_3)^(-r) of (U_3)^r. Therefore, the four sequences need not be causal.
Since U_3 is symmetric, so is M=(U_3)^r, so the block D_r also corresponds to the fourth row of M. Therefore, alternatively, for j=1,2,3,4, a(3r+p_j)=m_(4,j) gives the quantity of H_(9,j,0) tiles that should be present in a H_(9,4,r) tile.
Since a(3*r+2)=a(3*(r+1)-1) for all r>0, this sequence arises by concatenation of fourth-column entries m_(2,4), m_(3,4) and m_(4,4) (or fourth-row entries m_(4,2), m_(4,3) and m_(4,4)) from successive matrices M=(U_2)^r.
This sequence is a nontrivial extension of A038197.

References

  • L. E. Jeffery, Unit-primitive matrices and rhombus substitution tilings, (in preparation).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,-1,3,-3,3,0,0,0,-1,1,-1},{0,0,1,1,1,1,2,3,4,7,9},50] (* Harvey P. Dale, May 19 2015 *)

Formula

Recurrence: a(n)=2*a(n-3)+3*a(n-6)-a(n-9)-a(n-12), with initial conditions {a(m)}={0,0,1,1,1,2,3,4,7,10,19,26}, m=0,1,...,11.
G.f.: x^2*(1+x+x^2-x^3+x^5-x^6)/(1-2*x^3-3*x^6+x^9+x^12).
Showing 1-10 of 12 results. Next