A038223
Bottom line of 3-wave sequence A038196, also bisection of A006356.
Original entry on oeis.org
1, 6, 31, 157, 793, 4004, 20216, 102069, 515338, 2601899, 13136773, 66326481, 334876920, 1690765888, 8536537209, 43100270734, 217609704247, 1098693409021, 5547212203625, 28007415880892, 141407127676248
Offset: 0
- S. Morier-Genoud, V. Ovsienko and S. Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons, Annales de l'institut Fourier, 62 no. 3 (2012), 937-987; arXiv:1008.3359 [math.AG]. - From _N. J. A. Sloane_, Dec 26 2012
- F. v. Lamoen, Wave sequences
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
- Index entries for linear recurrences with constant coefficients, signature (6,-5,1).
-
p[x_] := 1 - 5 x + 6 x^2 - x^3; q[x_] := ExpandAll[x^3*p[1/x]]; Table[ SeriesCoefficient[ Series[x/q[x], {x, 0, 30}], n], {n, 0, 30}] (* Roger L. Bagula, Sep 20 2006 *)
-
k=3; M(k)=matrix(k,k,i,j,min(i,j)); v(k)=vector(k,i,1); a(n)=vecmax(v(k)*M(k)^n)
A038213
Top line of 3-wave sequence A038196, also bisection of A006356.
Original entry on oeis.org
1, 3, 14, 70, 353, 1782, 8997, 45425, 229347, 1157954, 5846414, 29518061, 149034250, 752461609, 3799116465, 19181424995, 96845429254, 488964567014, 2468741680809, 12464472679038, 62932092237197, 317738931708801
Offset: 0
G.f. = 1 + 3*x + 14*x^2 + 70*x^3 + 353*x^4 + 1782*x^5 + 8997*x^6 + 45425*x^7 + ...
- Johann Cigler, Number of bounded Dyck paths with "negative length", MathOverflow question, Sep 26 2020.
- S. Morier-Genoud, V. Ovsienko and S. Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons, Annales de l'institut Fourier, 62 no. 3 (2012), 937-987; arXiv:1008.3359 [math.AG], 2010-2011. - _N. J. A. Sloane_, Dec 26 2012
- F. v. Lamoen, Wave sequences
- Index entries for linear recurrences with constant coefficients, signature (6, -5, 1).
-
k=3; M(k)=matrix(k,k,i,j,min(i,j)); v(k)=vector(k,i,1); a(n)=vecmin(v(k)*M(k)^n)
-
{a(n) = if( n<0, n = -n; polcoeff( (1 - 4*x + 3*x^2) / (1 - 5*x + 6*x^2 - x^3) + x * O(x^n), n), polcoeff( (1 - 3*x + x^2) / (1 - 6*x + 5*x^2 - x^3) + x * O(x^n), n))}; /* Michael Somos, May 04 2012 */
A006356
a(n) = 2*a(n-1) + a(n-2) - a(n-3) for n >= 3, starting with a(0) = 1, a(1) = 3, and a(2) = 6.
Original entry on oeis.org
1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, 4004, 8997, 20216, 45425, 102069, 229347, 515338, 1157954, 2601899, 5846414, 13136773, 29518061, 66326481, 149034250, 334876920, 752461609, 1690765888, 3799116465, 8536537209, 19181424995
Offset: 0
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd edition, p. 291 (very briefly without generalizations).
- J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
- Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..200
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
- J. Berman and P. Köhler, On Dedekind Numbers and Two Sequences of Knuth, J. Int. Seq., Vol. 24 (2021), Article 21.10.7.
- Sela Fried, A formula for the number of up-down words, arXiv:2503.02005 [math.CO], 2025.
- Emma L. L. Gao, Sergey Kitaev, and Philip B. Zhang, Pattern-avoiding alternating words, arXiv:1505.04078 [math.CO], 2015.
- Shanzhen Gao and Keh-Hsun Chen, Tackling Sequences From Prudent Self-Avoiding Walks, FCS'14, The 2014 International Conference on Foundations of Computer Science.
- S. Gao and H. Niederhausen, Sequences Arising From Prudent Self-Avoiding Walks, 2010.
- Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.
- V. E. Hoggatt Jr. and M. Bicknell-Johnson, Reflections across two and three glass plates, Fibonacci Quarterly, volume 17 (1979), 118-142.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 451
- L. E. Jeffery, Unit-primitive matrices
- B. Junge and V. E. Hoggatt, Jr., Polynomials arising from reflections across multiple plates, Fib. Quart., 11 (1973), 285-291.
- Peter Köhler, The Central Decomposition of FD_01(n), Order (2021).
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)
- Julien Leroy, Michel Rigo, and Manon Stipulanti, Behavior of Digital Sequences Through Exotic Numeration Systems, Electronic Journal of Combinatorics 24(1) (2017), #P1.44.
- Leo Moser, Problem B-6: some reflections, Fib. Quart. Vol. 1, No. 4 (1963), 75-76.
- Leo Moser and Max Wyman, Multiple reflections, Fib. Quart., 11 (1973).
- Gregg Musiker, Ralf Schiffler, Nicholas Ovenhouse, and Sylvester Zhang, Higher Dimer Covers on Snake Graphs, arXiv:2306.14389 [math.CO], 2023.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Lingjuan Shi and Kai Deng, The Numbers of Perfect and Maximal Matchings in Double Hexagonal Chains, Match Comm. Math. Comp. Chem. (2025) 659-685. See p. 8.
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
- R. Witula, D. Slota and A. Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-1).
-
a006056 n = a006056_list !! n
a006056_list = 1 : 3 : 6 : zipWith (+) (map (2 *) $ drop 2 a006056_list)
(zipWith (-) (tail a006056_list) a006056_list)
-- Reinhard Zumkeller, Oct 14 2011
-
[ n eq 1 select 1 else n eq 2 select 3 else n eq 3 select 6 else 2*Self(n-1)+Self(n-2)- Self(n-3): n in [1..40] ] ; // Vincenzo Librandi, Aug 20 2011
-
A006356:=-(-1-z+z**2)/(1-2*z-z**2+z**3); # conjectured by Simon Plouffe in his 1992 dissertation
-
LinearRecurrence[{2,1,-1},{1,3,6},30] (* or *) CoefficientList[ Series[ (1+x-x^2)/(1-2x-x^2+x^3),{x,0,30}],x] (* Harvey P. Dale, Jul 06 2011 *)
Table[If[n==0, a2=0; a1=1; a0=1, a3=a2; a2=a1; a1=a0; a0=2*a1+a2-a3], {n, 0, 29}] (* Jean-François Alcover, Apr 30 2013 *)
-
a(n):=sum(sum((sum(binomial(j,-3*k+2*j+i)*(-1)^(j-k)*binomial(k,j),j,0,k))*binomial(n+k-i-1,k-1),i,k,n),k,1,n); /* Vladimir Kruchinin, May 05 2011 */
-
{a(n)=local(p=3);polcoeff(sum(k=0,p-1,(-1)^((k+1)\2)*binomial((p+k-1)\2,k)* (-x)^k)/sum(k=0,p,(-1)^((k+1)\2)*binomial((p+k)\2,k)*x^k+x*O(x^n)),n)} \\ Paul D. Hanna, Feb 06 2006
-
Vec((1+x-x^2)/(1-2*x-x^2+x^3)+O(x^66)) \\ Joerg Arndt, Apr 30 2013
-
from math import comb
def A006356(n): return sum(comb(j,a)*comb(k,j)*comb(n+k-i,k-1)*(-1 if j-k&1 else 1) for k in range(1,n+2) for i in range(k,n+2) for j in range(k+1) if (a:=-3*k+2*j+i)>=0) # Chai Wah Wu, Feb 19 2024
Recurrence, alternative description from Jacques Haubrich (jhaubrich(AT)freeler.nl)
A038197
4-wave sequence.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 4, 7, 9, 10, 19, 26, 30, 56, 75, 85, 160, 216, 246, 462, 622, 707, 1329, 1791, 2037, 3828, 5157, 5864, 11021, 14849, 16886, 31735, 42756, 48620, 91376, 123111, 139997, 263108, 354484, 403104, 757588, 1020696, 1160693, 2181389
Offset: 0
The first few rows of the T(n,k) array are, n>=1, 1 <= k <=4:
0, 0, 0, 1
1, 1, 1, 1
1, 2, 3, 4
4, 7, 9, 10
10, 19, 26, 30
30, 56, 75, 85
85, 160, 216, 246
- F. v. Lamoen, Wave sequences
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
- Eric Weisstein's World of Mathematics, Nonagon.
- Index entries for linear recurrences with constant coefficients, signature (1,-1,3,-3,3,0,0,0,-1,1,-1).
Cf.
A120747 (m = 5: hendecagon or 11-gon)
-
m:=4: nmax:=15: for k from 1 to m-1 do T(1,k):=0 od: T(1,m):=1: for n from 2 to nmax do for k from 1 to m do T(n,k):= add(T(n-1,k1), k1=m-k+1..m) od: od: for n from 1 to nmax/2 do seq(T(n,k), k=1..m) od; a(0):=1: Tx:=1: for n from 2 to nmax do for k from 2 to m do a(Tx):= T(n,k): Tx:=Tx+1: od: od: seq(a(n), n=0..Tx-1); # Johannes W. Meijer, Aug 03 2011
-
LinearRecurrence[{1,-1,3,-3,3,0,0,0,-1,1,-1},{1,1,1,1,2,3,4,7,9,10,19},50] (* Harvey P. Dale, Oct 02 2015 *)
A187070
Let i be in {1,2,3}, let r >= 0 be an integer and n=2*r+i-1. Then a(n)=a(2*r+i-1) gives the quantity of H_(7,3,0) tiles in a subdivided H_(7,i,r) tile after linear scaling by the factor x^r, where x=sqrt((2*cos(Pi/7))^2-1).
Original entry on oeis.org
0, 0, 1, 1, 1, 2, 3, 5, 6, 11, 14, 25, 31, 56, 70, 126, 157, 283, 353, 636, 793, 1429, 1782, 3211, 4004, 7215, 8997, 16212, 20216, 36428, 45425, 81853, 102069, 183922, 229347, 413269, 515338, 928607, 1157954, 2086561, 2601899
Offset: 0
Suppose r=3. Then
C_r = C_3 = {a(2*r),a(2*r+1),a(2*r+2)} = {a(6),a(7),a(8)} = {3,5,6},
corresponding to the entries in the third column of
M = (U_2)^3 = (1 2 3)
(2 4 5)
(3 5 6).
Choose i=2 and set n=2*r+i-1. Then a(n) = a(2*r+i-1) = a(6+2-1) = a(7) = 5, which equals the entry in row 2 and column 3 of M. Hence a subdivided H_(7,2,3) tile should contain a(7) = m_(2,3) = 5 H_(7,3,0) tiles.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- L. Edson Jeffery, Unit-primitive matrices
- Roman Witula, D. Slota and A. Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,1,0,-1).
A038201
5-wave sequence.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 3, 4, 5, 9, 12, 14, 15, 29, 41, 50, 55, 105, 146, 175, 190, 365, 511, 616, 671, 1287, 1798, 2163, 2353, 4516, 6314, 7601, 8272, 15873, 22187, 26703, 29056, 55759, 77946, 93819, 102091, 195910, 273856, 329615, 358671, 688286, 962142
Offset: 0
The first few rows of the T(n,k) array are, n>=1, 1 <= k <=5:
0, 0, 0, 0, 1
1, 1, 1, 1, 1
1, 2, 3, 4, 5
5, 9, 12, 14, 15
15, 29, 41, 50, 55
55, 105, 146, 175, 190
190, 365, 511, 616, 671
G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 9*x^8 + 12*x^9 + ...
- D. E. Knuth, Art of Computer Programming, Vol. 3, Sect. 5.4.3, Eq. (1).
- F. v. Lamoen, Wave sequences
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
- Eric Weisstein's World of Mathematics, Hendecagon.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,0,0,0,3,0,0,0,-4,0,0,0,-1,0,0,0,1).
-
m:=5: nmax:=12: for k from 1 to m-1 do T(1,k):=0 od: T(1,m):=1: for n from 2 to nmax do for k from 1 to m do T(n,k):= add(T(n-1,k1), k1=m-k+1..m) od: od: for n from 1 to nmax/2 do seq(T(n,k), k=1..m) od; a(0):=1: Tx:=1: for n from 2 to nmax do for k from 2 to m do a(Tx):= T(n,k): Tx:=Tx+1: od: od: seq(a(n), n=0..Tx-1); # Johannes W. Meijer, Aug 03 2011
-
LinearRecurrence[{0,0,0,3,0,0,0,3,0,0,0,-4,0,0,0,-1,0,0,0,1},{1,1,1,1,1,2,3,4,5,9,12,14,15,29,41,50,55,105,146,175},50] (* Harvey P. Dale, Dec 13 2012 *)
-
{a(n) = local(m); if( n<=0, n==0, m = (n-1)\4 * 4; sum(k=2*m - n, m, a(k)))};
A187068
Let i be in {1,2,3}, let r >= 0 be an integer and n=2*r+i-1. Then a(n)=a(2*r+i-1) gives the quantity of H_(7,1,0) tiles in a subdivided H_(7,i,r) tile after linear scaling by the factor x^r, where x=sqrt((2*cos(Pi/7))^2-1).
Original entry on oeis.org
1, 0, 0, 0, 1, 1, 1, 2, 3, 5, 6, 11, 14, 25, 31, 56, 70, 126, 157, 283, 353, 636, 793, 1429, 1782, 3211, 4004, 7215, 8997, 16212, 20216, 36428, 45425, 81853, 102069, 183922, 229347, 413269, 515338, 928607, 1157954, 2086561, 2601899
Offset: 0
(Start) Suppose r=3. Then
A_r = A_3 = {a(2*r),a(2*r+1),a(2*r+2)} = {a(6),a(7),a(8)} = {1,2,3},
corresponding to the entries in the first column of
M = m_(i,j) = (U_2)^3 =
(1 2 3)
(2 4 5)
(3 5 6).
Suppose i=2. Setting n=2*r+i-1, then a(n) = a(2*r+i-1) = a(6+2-1) = a(7) = m_(2,1) = 2. Hence a subdivided H_(7,2,3) tile should contain a(7) = m_(2,1) = 2 H_(7,1,0) tiles. (End)
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- L. E. Jeffery, Unit-primitive matrices
- Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,1,0,-1).
-
a[0] = 1; a[1] = a[2] = a[3] = 0; a[4] = a[5] = 1; a[?Negative] = 0; a[n] := a[n] = 2*a[n-2] + a[n-4] - a[n-6]; Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Jan 02 2013 *)
CoefficientList[Series[(1 - 2*x^2 + x^5)/(1 - 2*x^2 - x^4 + x^6), {x, 0, 50}], x] (* G. C. Greubel, Jul 06 2017 *)
-
x='x+O('x^50); Vec((1-2*x^2+x^5)/(1-2*x^2-x^4+x^6)) \\ G. C. Greubel, Jul 06 2017
A187069
Let i be in {1,2,3}, let r >= 0 be an integer and n=2*r+i-1. Then a(n)=a(2*r+i-1) gives the quantity of H_(7,2,0) tiles in a subdivided H_(7,i,r) tile after linear scaling by the factor x^r, where x=sqrt((2*cos(Pi/7))^2-1).
Original entry on oeis.org
0, 1, 0, 1, 1, 2, 2, 4, 5, 9, 11, 20, 25, 45, 56, 101, 126, 227, 283, 510, 636, 1146, 1429, 2575, 3211, 5786, 7215, 13001, 16212, 29213, 36428, 65641, 81853, 147494, 183922, 331416, 413269, 744685, 928607, 1673292, 2086561, 3759853, 4688460, 8448313, 10534874
Offset: 0
Suppose r=3.
Then B_r = B_3 = {a(2*r),a(2*r+1),a(2*r+2)} = {a(6),a(7),a(8)} = {2,4,5}, corresponding to the entries in the second column of
M = (U_2)^3 = (1 2 3)
(2 4 5)
(3 5 6).
Suppose i=2. Setting n=2*r+i-1, then a(n) = a(2*r+i-1) = a(6+2-1) = a(7) = m_(2,2) = 4. Hence a subdivided H_(7,2,3) tile should contain a(7) = m_(2,2) = 4 H_(7,2,0) tiles.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- L. Edson Jeffery, Unit-primitive matrices
- Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,1,0,-1).
-
CoefficientList[Series[x*(1 - x^2 + x^3 - x^4)/(1 - 2*x^2 - x^4 + x^6), {x, 0, 50}], x] (* G. C. Greubel, Oct 20 2017 *)
LinearRecurrence[{0,2,0,1,0,-1},{0,1,0,1,1,2},50] (* Harvey P. Dale, Dec 16 2017 *)
-
my(x='x+O('x^50)); concat([0], Vec(x*(1-x^2+x^3-x^4)/(1-2*x^2-x^4+x^6))) \\ G. C. Greubel, Oct 20 2017
A120747
Sequence relating to the 11-gon (or hendecagon).
Original entry on oeis.org
0, 1, 4, 14, 50, 175, 616, 2163, 7601, 26703, 93819, 329615, 1158052, 4068623, 14294449, 50221212, 176444054, 619907431, 2177943781, 7651850657, 26883530748, 94450905714, 331837870408, 1165858298498, 4096053203771, 14390815650209, 50559786403254
Offset: 1
From _Johannes W. Meijer_, Aug 03 2011: (Start)
The lengths of the regular hendecagon edge and diagonals are:
r[1] = 1.000000000, r[2] = 1.918985948, r[3] = 2.682507066,
r[4] = 3.228707416, r[5] = 3.513337092.
The first few rows of the T(n,k) array are, n>=1, 1 <= k <=5:
0, 0, 0, 0, 1, ...
1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, ...
5, 9, 12, 14, 15, ...
15, 29, 41, 50, 55, ...
55, 105, 146, 175, 190, ...
190, 365, 511, 616, 671, ... (End)
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Jay Kappraff, Slavik Jablan, Gary W. Adamson and Radmila Sazdanovich, Golden Fields, Generalized Fibonacci Sequences and Chaotic Matrices, Forma, Vol. 19 No. 4, pp. 367-387, 2004.
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31, MR 1439165
- Eric Weisstein's World of Mathematics, Hendecagon.
- Index entries for linear recurrences with constant coefficients, signature (3,3,-4,-1,1).
Cf.
A006358 (T(n+2,1) and T(n+1,5)),
A069006 (T(n+1,2)),
A038342 (T(n+1,3)), this sequence (T(n,4)) (m=5: hendecagon or 11-gon).
-
R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x^2*(1+x-x^2)/(1-3*x-3*x^2+4*x^3+x^4-x^5) )); // G. C. Greubel, Nov 13 2022
-
nmax:=27: m:=5: for k from 1 to m-1 do T(1,k):=0 od: T(1,m):=1: for n from 2 to nmax do for k from 1 to m do T(n,k):= add(T(n-1,k1), k1=m-k+1..m) od: od: for n from 1 to nmax/3 do seq(T(n,k), k=1..m) od; for n from 1 to nmax do a(n):=T(n,4) od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Aug 03 2011
-
LinearRecurrence[{3, 3, -4, -1, 1}, {0, 1, 4, 14, 50}, 41] (* G. C. Greubel, Nov 13 2022 *)
-
def A120747_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x*(1+x-x^2)/(1-3*x-3*x^2+4*x^3+x^4-x^5) ).list()
A120747_list(40) # G. C. Greubel, Nov 13 2022
A060827
3-wave sequence beginning with 2's.
Original entry on oeis.org
2, 2, 2, 4, 6, 10, 12, 22, 28, 50, 62, 112, 140, 252, 314, 566, 706, 1272, 1586, 2858, 3564, 6422, 8008, 14430, 17994, 32424, 40432, 72856, 90850, 163706, 204138, 367844, 458694, 826538, 1030676, 1857214, 2315908, 4173122, 5203798, 9376920
Offset: 0
More terms from Larry Reeves (larryr(AT)acm.org), May 10 2001
Showing 1-10 of 12 results.
Comments