A056284 Number of n-bead necklaces with exactly four different colored beads.
0, 0, 0, 6, 48, 260, 1200, 5106, 20720, 81876, 318000, 1223136, 4675440, 17815020, 67769552, 257700906, 980240880, 3731753180, 14222737200, 54278580036, 207438938000, 793940475900, 3043140078000, 11681057249536, 44900438149296, 172824331826580, 666070256489680
Offset: 1
Keywords
Examples
For n=4, the six necklaces are ABCD, ABDC, ACBD, ACDB, ADBC and ADCB.
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
k=4; Table[k!DivisorSum[n,EulerPhi[#]StirlingS2[n/#,k]&]/n,{n,1,30}] (* Robert A. Russell, Sep 26 2018 *)
-
PARI
a(n) = my(k=4);(k!/n)*sumdiv(n, d, eulerphi(d)*stirling(n/d,k,2)); \\ Michel Marcus, Sep 27 2018
Formula
From Robert A. Russell, Sep 26 2018: (Start)
a(n) = (k!/n) Sum_{d|n} phi(d) S2(n/d,k), where k=4 is the number of colors and S2 is the Stirling subset number A008277.
G.f.: -Sum_{d>0} (phi(d)/d) * Sum_{j} (-1)^(k-j) * C(k,j) * log(1-j x^d), where k=4 is the number of colors. (End)
Comments