cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056284 Number of n-bead necklaces with exactly four different colored beads.

Original entry on oeis.org

0, 0, 0, 6, 48, 260, 1200, 5106, 20720, 81876, 318000, 1223136, 4675440, 17815020, 67769552, 257700906, 980240880, 3731753180, 14222737200, 54278580036, 207438938000, 793940475900, 3043140078000, 11681057249536, 44900438149296, 172824331826580, 666070256489680
Offset: 1

Views

Author

Keywords

Comments

Turning over the necklace is not allowed.

Examples

			For n=4, the six necklaces are ABCD, ABDC, ACBD, ACDB, ADBC and ADCB.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Cf. A001868.
Column k=4 of A087854.

Programs

  • Mathematica
    k=4; Table[k!DivisorSum[n,EulerPhi[#]StirlingS2[n/#,k]&]/n,{n,1,30}] (* Robert A. Russell, Sep 26 2018 *)
  • PARI
    a(n) = my(k=4);(k!/n)*sumdiv(n, d, eulerphi(d)*stirling(n/d,k,2)); \\ Michel Marcus, Sep 27 2018

Formula

a(n) = A001868(n) - 4*A001867(n) + 6*A000031(n) - 4.
From Robert A. Russell, Sep 26 2018: (Start)
a(n) = (k!/n) Sum_{d|n} phi(d) S2(n/d,k), where k=4 is the number of colors and S2 is the Stirling subset number A008277.
G.f.: -Sum_{d>0} (phi(d)/d) * Sum_{j} (-1)^(k-j) * C(k,j) * log(1-j x^d), where k=4 is the number of colors. (End)