cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056295 Number of n-bead necklace structures using exactly two different colored beads.

Original entry on oeis.org

0, 1, 1, 3, 3, 7, 9, 19, 29, 55, 93, 179, 315, 595, 1095, 2067, 3855, 7315, 13797, 26271, 49939, 95419, 182361, 349715, 671091, 1290871, 2485533, 4794087, 9256395, 17896831, 34636833, 67110931, 130150587, 252648991, 490853415, 954444607, 1857283155, 3616828363
Offset: 1

Views

Author

Keywords

Comments

Turning over the necklace is not allowed. Colors may be permuted without changing the necklace structure.

Examples

			For a(7) = 9, the color patterns are AAAAAAB, AAAAABB, AAAABAB, AAAABBB, AAABAAB, AABAABB, AABABAB, AAABABB, and AAABBAB. The first seven are achiral; the last two are a chiral pair. - _Robert A. Russell_, Mar 08 2018
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]

Crossrefs

Column 2 of A152175.

Programs

  • Maple
    See A000013.
  • Mathematica
    Table[DivisorSum[n, EulerPhi[#] If[OddQ[#], StirlingS2[n/#, 2], StirlingS2[n/#+1, 2]]&]/n, {n,1,30}] (* Robert A. Russell, Feb 20 2018 *)

Formula

a(n) = A000013(n) - 1.
From Robert A. Russell, Mar 08 2018: (Start)
G.f.: Sum_{ d>0 } phi(d)*(2*log(1-x^d) - (1+[d == 0 mod 2])*log(1-2*x^d)) / (2*d);
a(n) = (1/n)*Sum_{d|n} phi(d) * S2(n/d + [d == 0 mod 2], 2), where S2(n, k) is the Stirling subset number, A008277. (End)