A056295 Number of n-bead necklace structures using exactly two different colored beads.
0, 1, 1, 3, 3, 7, 9, 19, 29, 55, 93, 179, 315, 595, 1095, 2067, 3855, 7315, 13797, 26271, 49939, 95419, 182361, 349715, 671091, 1290871, 2485533, 4794087, 9256395, 17896831, 34636833, 67110931, 130150587, 252648991, 490853415, 954444607, 1857283155, 3616828363
Offset: 1
Examples
For a(7) = 9, the color patterns are AAAAAAB, AAAAABB, AAAABAB, AAAABBB, AAABAAB, AABAABB, AABABAB, AAABABB, and AAABBAB. The first seven are achiral; the last two are a chiral pair. - _Robert A. Russell_, Mar 08 2018
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Joshua P. Bowman, Compositions with an Odd Number of Parts, and Other Congruences, J. Int. Seq (2024) Vol. 27, Art. 24.3.6. See p. 17.
Programs
-
Maple
See A000013.
-
Mathematica
Table[DivisorSum[n, EulerPhi[#] If[OddQ[#], StirlingS2[n/#, 2], StirlingS2[n/#+1, 2]]&]/n, {n,1,30}] (* Robert A. Russell, Feb 20 2018 *)
Formula
a(n) = A000013(n) - 1.
From Robert A. Russell, Mar 08 2018: (Start)
G.f.: Sum_{ d>0 } phi(d)*(2*log(1-x^d) - (1+[d == 0 mod 2])*log(1-2*x^d)) / (2*d);
a(n) = (1/n)*Sum_{d|n} phi(d) * S2(n/d + [d == 0 mod 2], 2), where S2(n, k) is the Stirling subset number, A008277. (End)
Comments