cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A052551 Expansion of 1/((1 - x)*(1 - 2*x^2)).

Original entry on oeis.org

1, 1, 3, 3, 7, 7, 15, 15, 31, 31, 63, 63, 127, 127, 255, 255, 511, 511, 1023, 1023, 2047, 2047, 4095, 4095, 8191, 8191, 16383, 16383, 32767, 32767, 65535, 65535, 131071, 131071, 262143, 262143, 524287, 524287, 1048575, 1048575, 2097151, 2097151
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Equals row sums of triangle A137865. - Gary W. Adamson, Feb 18 2008
Also, the decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 566", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Jul 05 2017
Number of nonempty subsets of {1,2,...,n+1} that contain only odd numbers. a(0) = a(1) = 1: {1}; a(6) = a(7) = 15: {1}, {3}, {5}, {7}, {1,3}, {1,5}, {1,7}, {3,5}, {3,7}, {5,7}, {1,3,5}, {1,3,7}, {1,5,7}, {3,5,7}, {1,3,5,7}. - Enrique Navarrete, Mar 16 2018
Number of nonempty subsets of {1,2,...,n+2} that contain only even numbers. a(0) = a(1) = 1: {2}; a(4) = a(5) = 7: {2}, {4}, {6}, {2,4}, {2,6}, {4,6}, {2,4,6}. - Enrique Navarrete, Mar 26 2018
Doubling of A000225(n+1), n >= 0 entries. First differences give A077957. - Wolfdieter Lang, Apr 08 2018
a(n-2) is the number of achiral rows or cycles of length n partitioned into two sets or the number of color patterns using exactly 2 colors. An achiral row or cycle is equivalent to its reverse. Two color patterns are equivalent if the colors are permuted. For n = 4, the a(n-2) = 3 row patterns are AABB, ABAB, and ABBA; the cycle patterns are AAAB, AABB, and ABAB. For n = 5, the a(n-2) = 3 patterns for both rows and cycles are AABAA, ABABA, and ABBBA. For n = 6, the a(n-2) = 7 patterns for rows are AAABBB, AABABB, AABBAA, ABAABA, ABABAB, ABBAAB, and ABBBBA; the cycle patterns are AAAAAB, AAAABB, AAABAB, AAABBB, AABAAB, AABABB, and ABABAB. - Robert A. Russell, Oct 15 2018
For integers m > 1, the expansion of 1/((1 - x)*(1 - m*x^2)) generates a(n) = (sqrt(m)^(n + 1)*((-1)^n*(sqrt(m) - 1) + sqrt(m) + 1) - 2)/(2*(m - 1)). It appears, for integer values of n >= 0 and m > 1, that it could be simplified in the integral domain a(n) = (m^(1 + floor(n/2)) - 1)/(m - 1). - Federico Provvedi, Nov 23 2018
From Werner Schulte, Mar 04 2019: (Start)
More generally: For some fixed integers q and r > 0 the expansion of A(q,r; x) = 1/((1-x)*(1-q*x^r)) generates coefficients a(q,r; n) = (q^(1+floor(n/r))-1)/(q-1) for n >= 0; the special case q = 1 leads to a(1,r; n) = 1 + floor(n/r).
The a(q,r; n) satisfy for n > r a linear recurrence equation with constant coefficients. The signature vector is given by the sum of two vectors v and w where v has terms 1 followed by r zeros, i.e., (1,0,0,...,0), and w has r-1 leading zeros followed by q and -q, i.e., (0,0,...,0,q,-q).
Let a_i(q,r; n) be the convolution inverse of a(q,r; n). The terms are given by the sum a_i(q,r; n) = b(n) + c(n) for n >= 0 where b(n) has terms 1 and -1 followed by infinitely zeros, i.e., (1,-1,0,0,0,...), and c(n) has r leading zeros followed by -q, q and infinitely zeros, i.e., (0,0,...,0,-q,q,0,0,0,...).
Here is an example for q = 3 and r = 5: The expansion of A(3,5; x) = 1/((1-x)*(1-3*x^5)) = Sum_{n>=0} a(3,5; n)*x^n generates the sequence of coefficients (a(3,5; n)) = (1,1,1,1,1,4,4,4,4,4,13,13,13,13,13,40,...) where r = 5 controls the repetition and q = 3 the different values.
The a(3,5; n) satisfy for n > 5 the linear recurrence equation with constant coefficients and signature (1,0,0,0,0,0) + (0,0,0,0,3,-3) = (1,0,0,0,3,-3).
The convolution inverse a_i(3,5; n) has terms (1,-1,0,0,0,0,0,0,0,...) + (0,0,0,0,0,-3,3,0,0,...) = (1,-1,0,0,0,-3,3,0,0,...).
For further examples and informations see A014983 (q,r = -3,1), A077925 (q,r = -2,1), A000035 (q,r = -1,1), A000012 (q,r = 0,1), A000027 (q,r = 1,1), A000225 (q,r = 2,1), A003462 (q,r = 3,1), A077953 (q,r = -2,2), A133872 (q,r = -1,2), A004526 (q,r = 1,2), A052551 (this sequence with q,r = 2,2), A077886 (q,r = -2,3), A088911 (q,r = -1,3), A002264 (q,r = 1,3) and A077885 (q,r = 2,3). The offsets might be different.
(End)
a(n) is the number of palindromes of length n over the alphabet {1,2} containing the letter 1. More generally, the number of palindromes of length n over the alphabet {1,2,...,k} containing the letter 1 is given by k^ceiling(n/2)-(k-1)^ceiling(n/2). - Sela Fried, Dec 10 2024

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Column 2 (offset by two) of A304972.
Cf. A000225 (oriented), A056326 (unoriented), and A122746(n-2) (chiral) for rows.
Cf. A056295 (oriented), A056357 (unoriented), and A059053 (chiral) for cycles.

Programs

  • GAP
    Flat(List([1..21],n->[2^n-1,2^n-1])); # Muniru A Asiru, Oct 16 2018
    
  • Magma
    [2^Floor(n/2)-1: n in [2..50]]; // Vincenzo Librandi, Aug 16 2011
    
  • Maple
    spec := [S,{S=Prod(Sequence(Prod(Z,Union(Z,Z))),Sequence(Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Table[StirlingS2[Floor[n/2] + 2, 2], {n, 0, 50}] (* Robert A. Russell, Dec 20 2017 *)
    Drop[LinearRecurrence[{1, 2, -2}, {0, 1, 1}, 50], 1] (* Robert A. Russell, Oct 14 2018 *)
    CoefficientList[Series[1/((1-x)*(1-2*x^2)), {x, 0, 50}], x] (* Stefano Spezia, Oct 16 2018 *)
    2^(1+Floor[(Range[0,50])/2])-1 (* Federico Provvedi, Nov 22 2018 *)
    ((-1)^#(Sqrt[2]-1)+Sqrt[2]+1)2^((#-1)/2)-1&@Range[0, 50] (* Federico Provvedi, Nov 23 2018 *)
  • PARI
    x='x+O('x^50); Vec(1/((1-x)*(1-2*x^2))) \\ Altug Alkan, Mar 19 2018
    
  • Sage
    [2^(floor(n/2)) -1 for n in (2..50)] # G. C. Greubel, Mar 04 2019

Formula

G.f.: 1/((1 - x)*(1 - 2*x^2)).
Recurrence: a(1) = 1, a(0) = 1, -2*a(n) - 1 + a(n+2) = 0.
a(n) = -1 + Sum((1/2)*(1 + 2*alpha)*alpha^(-1 - n)) where the sum is over alpha = the two roots of -1 + 2*x^2.
a(n) = A016116(n+2) - 1. - R. J. Mathar, Jun 15 2009
a(n) = A060546(n+1) - 1. - Filip Zaludek, Dec 10 2016
From Robert A. Russell, Oct 15 2018: (Start)
a(n-2) = S2(floor(n/2)+1,2), where S2 is the Stirling subset number A008277.
a(n-2) = 2*A056326(n) - A000225(n) = A000225(n) - 2*A122746(n-2) = A056326(n) - A122746(n-2).
a(n-2) = 2*A056357(n) - A056295(n) = A056295(n) - 2*A059053(n) = A056357(n) - A059053(n). (End)
From Federico Provvedi, Nov 22 2018: (Start)
a(n) = 2^( 1 + floor(n/2) ) - 1.
a(n) = ( (-1)^n*(sqrt(2)-1) + sqrt(2) + 1 ) * 2^( (n - 1)/2 ) - 1. (End)
E.g.f.: 2*cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x) - cosh(x) - sinh(x). - Franck Maminirina Ramaharo, Nov 23 2018

Extensions

More terms from James Sellers, Jun 06 2000

A152175 Triangle read by rows: T(n,k) is the number of k-block partitions of an n-set up to rotations.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 5, 2, 1, 1, 7, 18, 13, 3, 1, 1, 9, 43, 50, 20, 3, 1, 1, 19, 126, 221, 136, 36, 4, 1, 1, 29, 339, 866, 773, 296, 52, 4, 1, 1, 55, 946, 3437, 4281, 2303, 596, 78, 5, 1, 1, 93, 2591, 13250, 22430, 16317, 5817, 1080, 105, 5, 1, 1, 179, 7254, 51075, 115100, 110462, 52376, 13299, 1873, 147, 6, 1
Offset: 1

Views

Author

Vladeta Jovovic, Nov 27 2008

Keywords

Comments

Number of n-bead necklace structures using exactly k different colored beads. Turning over the necklace is not allowed. Permuting the colors does not change the structure. - Andrew Howroyd, Apr 06 2017

Examples

			Triangle begins with T(1,1):
  1;
  1,   1;
  1,   1,     1;
  1,   3,     2,      1;
  1,   3,     5,      2,      1;
  1,   7,    18,     13,      3,      1;
  1,   9,    43,     50,     20,      3,      1;
  1,  19,   126,    221,    136,     36,      4,      1;
  1,  29,   339,    866,    773,    296,     52,      4,     1;
  1,  55,   946,   3437,   4281,   2303,    596,     78,     5,    1;
  1,  93,  2591,  13250,  22430,  16317,   5817,   1080,   105   , 5,   1;
  1, 179,  7254,  51075, 115100, 110462,  52376,  13299,  1873,  147,   6, 1;
  1, 315, 20125, 194810, 577577, 717024, 439648, 146124, 27654, 3025, 187, 6, 1;
  ...
For T(4,2)=3, the set partitions are AAAB, AABB, and ABAB.
For T(4,3)=2, the set partitions are AABC and ABAC.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Columns 2-6 are A056295, A056296, A056297, A056298, A056299.
Row sums are A084423.
Partial row sums include A000013, A002076, A056292, A056293, A056294.
Cf. A075195, A087854, A008277 (set partitions), A284949 (up to reflection), A152176 (up to rotation and reflection).
A(1,n,k) in formula is the Stirling subset number A008277.
A(2,n,k) in formula is A293181; A(3,n,k) in formula is A294201.

Programs

  • Mathematica
    (* Using recursion formula from Gilbert and Riordan:*)
    Adn[d_, n_] := Adn[d, n] = Which[0==n, 1, 1==n, DivisorSum[d, x^# &],
      1==d, Sum[StirlingS2[n, k] x^k, {k, 0, n}],
      True, Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n - 1], x] x]];
    Table[CoefficientList[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/(x n), x],
       {n, 1, 10}] // Flatten (* Robert A. Russell, Feb 23 2018 *)
    Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d,Adnk[d,n-1,k-#] &], Boole[n==0 && k==0]]
    Table[DivisorSum[n,EulerPhi[#]Adnk[#,n/#,k]&]/n,{n,1,12},{k,1,n}] // Flatten (* Robert A. Russell, Oct 16 2018 *)
  • PARI
    \\ see A056391 for Polya enumeration functions
    T(n,k) = NonequivalentStructsExactly(CyclicPerms(n), k); \\ Andrew Howroyd, Oct 14 2017
    
  • PARI
    R(n) = {Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
    { my(A=R(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019

Formula

T(n,k) = (1/n)*Sum_{d|n} phi(d)*A(d,n/d,k), where A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)). - Robert A. Russell, Oct 16 2018

A059053 Number of chiral pairs of necklaces with n beads and two colors (color complements being equivalent); i.e., turning the necklace over neither leaves it unchanged nor simply swaps the colors.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 7, 12, 31, 58, 126, 234, 484, 906, 1800, 3402, 6643, 12624, 24458, 46686, 90157, 172810, 333498, 641340, 1238671, 2388852, 4620006, 8932032, 17302033, 33522698, 65042526, 126258960, 245361172, 477091232
Offset: 0

Views

Author

Henry Bottomley, Dec 21 2000

Keywords

Comments

Number of chiral pairs of set partitions of a cycle of n elements using exactly two different elements. - Robert A. Russell, Oct 02 2018

Examples

			For a(7) = 1, the chiral pair is AAABABB-AAABBAB.
For a(8) = 2, the chiral pairs are AAAABABB-AAAABBAB and AAABAABB-AAABBAAB.
		

Crossrefs

Column 2 of A320647 and A320742.
Cf. A056295 (oriented), A056357 (unoriented), A052551(n-2) (achiral).

Programs

  • Mathematica
    Prepend[Table[DivisorSum[n, EulerPhi[#] StirlingS2[n/# + If[Divisible[#,2],1,0], 2] &] / (2n) - StirlingS2[1+Floor[n/2],2] / 2, {n, 1, 40}],0] (* Robert A. Russell, Oct 02 2018 *)
  • PARI
    a(n) = {if(n<1, 0, (sumdiv(n, k, eulerphi(2*k) * 2^(n/k)) / (2*n) - 2^(n\2))/2)}; \\ Andrew Howroyd, Nov 03 2019

Formula

a(n) = A000013(n) - A000011(n) = A000011(n) - A016116(n) = (A000013(n) - A016116(n))/2.
From Robert A. Russell, Oct 02 2018: (Start)
a(n) = (A056295(n)-A052551(n-2)) / 2 = A056295(n) - A056357(n) = A056357(n) - A052551(n-2).
a(n) = -S2(1+floor(n/2),2) + (1/2n) * Sum_{d|n} phi(d) * S2(n/d+[2|d],2), where S2 is a Stirling subset number A008277.
G.f.: -x(1+2x)/(2-4x^2) - Sum_{d>0} phi(d) * log(1-2x^d) / (2d*(2-[2|d])).
(End)

Extensions

Name clarified by Robert A. Russell, Oct 02 2018

A294791 Triangle read by rows, 1 <= k <= n: T(n,k) = non-isomorphic colorings of a toroidal n X k grid using exactly two colors under translational symmetry and swappable colors.

Original entry on oeis.org

0, 1, 4, 1, 7, 31, 3, 23, 179, 2107, 3, 55, 1095, 26271, 671103, 7, 189, 7327, 350063, 17896831, 954459519, 9, 595, 49939, 4794087, 490853415, 52357746895, 5744387279871, 19, 2101, 349715, 67115111, 13743921631, 2932032057731, 643371380132743, 144115188277194943, 29, 7315, 2485591, 954444607, 390937468407, 166799988703927, 73201365371896619
Offset: 1

Views

Author

Marko Riedel, Nov 08 2017

Keywords

Comments

Two colorings are equivalent if there is a permutation of the colors that takes one to the other in addition to translational symmetries on the torus. (Power Group Enumeration.)

Examples

			For the 2 X 2 grid and two colors we find T(2,2) = 4:
  +---+  +---+  +---+  +---+
  |X| |  |X| |  |X|X|  |X| |
  +-+-+  +-+-+  +-+-+  +-+-+
  | | |  | |X|  | | |  |X| |
  +-+-+  +-+-+  +-+-+  +-+-+
		

References

  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Formula

T(n,k) = (1/(n*k*Q!))*(Sum_{sigma in S_Q} Sum_{d|n} Sum_{f|k} phi(d) phi(f) [[forall j_l(sigma) > 0 : l|lcm(d,f) ]] P(gcd(d,f)*(n/d)*(k/f), sigma)) where P(F, sigma) = F! [z^F] Product_{l=1..Q} (exp(lz)-1)^j_l(sigma) with Q=2. The notation j_l(sigma) is from the Harary text and gives the number of cycles of length l in the permutation sigma. [[.]] is an Iverson bracket.

A056303 Number of primitive (period n) n-bead necklace structures using exactly two different colored beads.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 9, 16, 28, 51, 93, 170, 315, 585, 1091, 2048, 3855, 7280, 13797, 26214, 49929, 95325, 182361, 349520, 671088, 1290555, 2485504, 4793490, 9256395, 17895679, 34636833, 67108864, 130150493, 252645135, 490853403, 954437120, 1857283155
Offset: 1

Views

Author

Keywords

Comments

Turning over the necklace is not allowed. Colors may be permuted without changing the necklace structure.
Identical to A000048 for n>1.
Number of binary Lyndon words of length n with an odd number of zeros. - Joerg Arndt, Oct 26 2015

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 2 of A107424.

Programs

  • PARI
    vector(100, n, sumdiv(n, d, (d%2)*(moebius(d)*2^(n/d)))/(2*n)-!(n-1)) \\ Altug Alkan, Oct 26 2015
    
  • Python
    from sympy import divisors, mobius
    def a000048(n): return 1 if n<1 else sum([mobius(d)*2**(n/d) for d in divisors(n) if d%2 == 1])/(2*n)
    def a(n): return a000048(n) - 0**(n - 1) # Indranil Ghosh, Apr 28 2017

Formula

a(n) = Sum mu(d)*A056295(n/d) where d divides n.
a(n) = A000048(n) - A000007(n-1).

A056357 Number of bracelet structures using exactly two different colored beads.

Original entry on oeis.org

0, 1, 1, 3, 3, 7, 8, 17, 22, 43, 62, 121, 189, 361, 611, 1161, 2055, 3913, 7154, 13647, 25481, 48733, 92204, 176905, 337593, 649531, 1246862, 2405235, 4636389, 8964799, 17334800, 33588233, 65108061, 126390031, 245492243, 477353375, 928772649, 1808676325
Offset: 1

Views

Author

Keywords

Comments

Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure.
Also the number of distinct twills of period n. [Grünbaum and Shephard]

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 2 of A152176.
Cf. A056295.

Programs

  • Maple
    with(numtheory);
    rho:=n->(3+(-1)^n)/2;
    f:=n->2^((n+rho(n))/2-2) + (1/(4*n))*(add(phi(d)*rho(d)*2^(n/d), d in divisors(n))) - 1;
    # N. J. A. Sloane, Jul 13 2011
  • PARI
    a(n) = {if(n<1, 0, 2^(n\2-1) - 1 + sumdiv(n, k, eulerphi(2*k) * 2^(n/k)) / (4*n))}; \\ Andrew Howroyd, Oct 24 2019

Formula

a(n) = A000011(n) - 1.
For an explicit formula see the Maple program.

Extensions

Terms a(32) and beyond from Andrew Howroyd, Oct 24 2019

A187767 Number of bicolored cyclic patterns n X n.

Original entry on oeis.org

0, 2, 3, 10, 15, 35, 63, 138, 255, 527, 1023, 2083, 4095, 8255, 16383, 32906, 65535, 131327, 262143, 524815, 1048575, 2098175, 4194303, 8390691, 16777215, 33558527, 67108863, 134225983, 268435455, 536887295, 1073741823, 2147516554, 4294967295, 8590000127, 17179869183
Offset: 1

Views

Author

Giovanni Resta, Jan 04 2013

Keywords

Comments

A bicolored cyclic pattern is a 0-1 n x n matrix where the j-th row is equal to the first row rotated to the left by (j-1)*k places, with 1 <= k <= n a parameter. For example, with first row = 0110 we have
.
. (k=1) 0 1 1 0 (k=2) 0 1 1 0 (k=3) 0 1 1 0 (k=4) 0 1 1 0
. 1 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0
. 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0
. 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0
The (2^n-2)*n matrices so obtained are reduced considering equivalent those obtained exchanging 0's and 1's and those which produce the same pattern, apart translation.

Examples

			a(4)=10 is represented below. See Links for more examples.
. 1000 0100 0010 0001 0101 1010 1001 0110 1100 0011
. 0100 0001 0100 0001 0101 0101 1100 1100 0011 0011
. 0010 0100 1000 0001 0101 1010 0110 1001 1100 0011
. 0001 0001 0001 0001 0101 0101 0011 0011 0011 0011
		

Crossrefs

The number of patterns made of vertical stripes only is A056295(n).

Programs

  • Mathematica
    cyPatt[n_]:=Block[{b,c},c[v_,q_:1]:=Table[RotateLeft[v,i q],{i,n}]; b=Union[(First@Union[c@#,c[1-#]])& /@ IntegerDigits[Range[2^n/2-1], 2,n]]; Union@Flatten[Table[c[e,j],{j,n},{e,b}],1]];
    (*count*) a[n_] := Length@cyPatt@n; Print["Seq = ",a/@Range[12]];
    (*show*) showP[p_] := GraphicsGrid@Partition[ArrayPlot/@p,8,8,1,Null];
    showP[cyPatt[6]]
  • PARI
    b(n)=sumdiv(n,d,(d%2)*(moebius(d)*2^(n/d)))/(2*n);
    a(n)=sumdiv(n,d,d*b(d)) - 1; \\ Andrew Howroyd, Jun 02 2017

Formula

a(1) = 0; a(n) = 2^(n-1)-1 if n is odd, 2^(n-1)+a(n/2) if n is even (conjectured).
a(n) = -1 + Sum_{d|n} d*A000048(d). - Andrew Howroyd, Jun 02 2017

Extensions

a(22)-a(35) from Andrew Howroyd, Jun 02 2017

A327734 Number of n-bead bracelet structures using exactly two different colored beads that are not self-equivalent under either a nonzero rotation or reversal (turning over bracelet).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 2, 7, 12, 31, 57, 126, 232, 484, 900, 1800, 3388, 6643, 12594, 24457, 46624, 90157, 172680, 333498, 641088, 1238664, 2388357, 4620006, 8931052
Offset: 1

Views

Author

Andrew Howroyd, Sep 23 2019

Keywords

Examples

			Case n=7: There are 7 necklace structures using exactly two colors. See example in A056295. Of these, 5 are achiral and the other two a chiral pair: AAABABB/AAABBAB. a(7) = 1, since this sequence considers chiral pairs as the same bracelet structure.
		

Crossrefs

Column k=2 of A324802.
Showing 1-8 of 8 results.