cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A127804 a(2n) = 2^(2n), a(2n+1) = 2^(2n+1) + a(n).

Original entry on oeis.org

1, 3, 4, 11, 16, 36, 64, 139, 256, 528, 1024, 2084, 4096, 8256, 16384, 32907, 65536, 131328, 262144, 524816, 1048576, 2098176, 4194304, 8390692, 16777216, 33558528, 67108864, 134225984, 268435456, 536887296, 1073741824, 2147516555, 4294967296, 8590000128
Offset: 0

Views

Author

Paul Barry, Jan 29 2007

Keywords

Comments

From Tilman Piesk, Jun 30 2025: (Start)
The binary expansion of a(n), with bits least to most significant, is row n of A115361.
Number of 1's in binary expansion of a(n) is A001511(n+1).
Row sums of triangle A128807.
Row sums of triangle A127803.(End)

Crossrefs

Programs

  • Maple
    A127804 := proc(n)
        add( A127803(n,k),k=0..n) ;
    end proc: # R. J. Mathar, Feb 12 2024
    # second Maple program:
    a:= proc(n) option remember;
          2^n+`if`(n::odd, a((n-1)/2), 0)
        end:
    seq(a(n), n=0..33);  # Alois P. Heinz, Jul 01 2025
  • Mathematica
    rows = 30;
    A[n_, k_] := If[k <= n, If[n <= 2 k, 1/(2*2^n - 1), 0], 0];
    T = Table[A[n, k], {n, 0, rows-1}, {k, 0, rows-1}] // Inverse;
    a[n_] := T[[n+1]] // Total;
    Table[a[n], {n, 0, rows-1}] (* Jean-François Alcover, Jul 03 2018 *)

Formula

Conjecture: a(n) = 1 + A187767(n+1). - Andrew Howroyd, Jun 02 2017
From Tilman Piesk, Jun 30 2025: (Start)
a(n) = Sum_{i=0..A001511(n+1)-1} 2^((n+1) / 2^i - 1)
= Sum_{i=0..A001511(n+1)-1} 2^floor(n / 2^i).
a(n) = A045654(n+1) / 2. (End)

Extensions

Name changed by Tilman Piesk, Jun 30 2025

A373279 Expansion of Sum_{k>=0} x^(3^k) / (1 - 3*x^(3^k)).

Original entry on oeis.org

1, 3, 10, 27, 81, 246, 729, 2187, 6571, 19683, 59049, 177174, 531441, 1594323, 4783050, 14348907, 43046721, 129140409, 387420489, 1162261467, 3486785130, 10460353203, 31381059609, 94143181014, 282429536481, 847288609443, 2541865834900, 7625597484987
Offset: 1

Views

Author

Seiichi Manyama, May 30 2024

Keywords

Crossrefs

Programs

  • PARI
    b(n, k) = sumdiv(n, d, (gcd(d, k)==1)*(moebius(d)*k^(n/d)))/(k*n);
    a(n, k=3) = sumdiv(n, d, d*b(d, k));

Formula

G.f. A(x) satisfies A(x) = x/(1 - 3*x) + A(x^3).
If n == 0 (mod 3), a(n) = 3^n + a(n/3) otherwise a(n) = 3^n.
a(n) = Sum_{d|n} d * A046211(d).

A373280 Expansion of Sum_{k>=0} x^(4^k) / (1 - 4*x^(4^k)).

Original entry on oeis.org

1, 4, 16, 65, 256, 1024, 4096, 16388, 65536, 262144, 1048576, 4194320, 16777216, 67108864, 268435456, 1073741889, 4294967296, 17179869184, 68719476736, 274877907200, 1099511627776, 4398046511104, 17592186044416, 70368744178688, 281474976710656, 1125899906842624
Offset: 1

Views

Author

Seiichi Manyama, May 30 2024

Keywords

Crossrefs

Formula

G.f. A(x) satisfies A(x) = x/(1 - 4*x) + A(x^4).
If n == 0 (mod 4), a(n) = 4^n + a(n/4) otherwise a(n) = 4^n.

A373281 Expansion of Sum_{k>=0} x^(5^k) / (1 - 5*x^(5^k)).

Original entry on oeis.org

1, 5, 25, 125, 626, 3125, 15625, 78125, 390625, 1953130, 9765625, 48828125, 244140625, 1220703125, 6103515650, 30517578125, 152587890625, 762939453125, 3814697265625, 19073486328250, 95367431640625, 476837158203125, 2384185791015625, 11920928955078125
Offset: 1

Views

Author

Seiichi Manyama, May 30 2024

Keywords

Crossrefs

Programs

  • PARI
    b(n, k) = sumdiv(n, d, (gcd(d, k)==1)*(moebius(d)*k^(n/d)))/(k*n);
    a(n, k=5) = sumdiv(n, d, d*b(d, k));

Formula

G.f. A(x) satisfies A(x) = x/(1 - 5*x) + A(x^5).
If n == 0 (mod 5), a(n) = 5^n + a(n/5) otherwise a(n) = 5^n.
a(n) = Sum_{d|n} d * A054662(d).

A373282 Expansion of Sum_{k>=0} x^(6^k) / (1 - 6*x^(6^k)).

Original entry on oeis.org

1, 6, 36, 216, 1296, 7777, 46656, 279936, 1679616, 10077696, 60466176, 362797062, 2176782336, 13060694016, 78364164096, 470184984576, 2821109907456, 16926659444772, 101559956668416, 609359740010496, 3656158440062976, 21936950640377856
Offset: 1

Views

Author

Seiichi Manyama, May 30 2024

Keywords

Crossrefs

Formula

G.f. A(x) satisfies A(x) = x/(1 - 6*x) + A(x^6).
If n == 0 (mod 6), a(n) = 6^n + a(n/6) otherwise a(n) = 6^n.

A373283 Expansion of Sum_{k>=0} x^(7^k) / (1 - 7*x^(7^k)).

Original entry on oeis.org

1, 7, 49, 343, 2401, 16807, 117650, 823543, 5764801, 40353607, 282475249, 1977326743, 13841287201, 96889010414, 678223072849, 4747561509943, 33232930569601, 232630513987207, 1628413597910449, 11398895185373143, 79792266297612050, 558545864083284007
Offset: 1

Views

Author

Seiichi Manyama, May 30 2024

Keywords

Crossrefs

Programs

  • PARI
    b(n, k) = sumdiv(n, d, (gcd(d, k)==1)*(moebius(d)*k^(n/d)))/(k*n);
    a(n, k=7) = sumdiv(n, d, d*b(d, k));

Formula

G.f. A(x) satisfies A(x) = x/(1 - 7*x) + A(x^7).
If n == 0 (mod 7), a(n) = 7^n + a(n/7) otherwise a(n) = 7^n.
a(n) = Sum_{d|n} d * A373277(d).
Showing 1-6 of 6 results.