A156664 Binomial transform of A052551.
1, 2, 6, 16, 42, 108, 274, 688, 1714, 4244, 10458, 25672, 62826, 153372, 373666, 908896, 2207842, 5357348, 12988074, 31464568, 76179354, 184347564, 445923058, 1078290832, 2606699026, 6300077492, 15223631226, 36780894376, 88852528842, 214620169788
Offset: 0
Examples
a(3) = 16 = (1, 3, 3, 1) dot (1, 1, 3, 3) = (1 + 3 + 9 + 3).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-3,-2).
Crossrefs
Cf. A052551
Programs
-
Mathematica
CoefficientList[Series[(x^2-2x+1)/(2x^3+3x^2-4x+1),{x,0,40}],x] (* or *) LinearRecurrence[{4,-3,-2},{1,2,6},40] (* Harvey P. Dale, Apr 20 2013 *)
-
PARI
x='x+O('x^50); Vec((x^2-2*x+1)/(2*x^3+3*x^2-4*x+1)) \\ G. C. Greubel, Feb 24 2017
Formula
G.f.: (x^2 - 2*x + 1)/(2*x^3 + 3*x^2 - 4*x + 1). [Alexander R. Povolotsky, Feb 15 2009]
a(n) = 2*A000129(n+1)-2^n. [R. J. Mathar, Jun 15 2009]
a(n) = -2^n + (1-1/sqrt(2))*(1-sqrt(2))^n + (1+1/sqrt(2))*(1+sqrt(2))^n. - Alexander R. Povolotsky, Aug 16 2012
a(n+3) = -2*a(n) - 3*a(n+1) + 4*a(n+2). - Alexander R. Povolotsky, Aug 16 2012
Extensions
Corrected and extended by Harvey P. Dale, Apr 20 2013
Comments