cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A027383 a(2*n) = 3*2^n - 2; a(2*n+1) = 2^(n+2) - 2.

Original entry on oeis.org

1, 2, 4, 6, 10, 14, 22, 30, 46, 62, 94, 126, 190, 254, 382, 510, 766, 1022, 1534, 2046, 3070, 4094, 6142, 8190, 12286, 16382, 24574, 32766, 49150, 65534, 98302, 131070, 196606, 262142, 393214, 524286, 786430, 1048574, 1572862, 2097150, 3145726, 4194302, 6291454
Offset: 0

Views

Author

Keywords

Comments

Number of balanced strings of length n: let d(S) = #(1's) - #(0's), # == count in S, then S is balanced if every substring T of S has -2 <= d(T) <= 2.
Number of "fold lines" seen when a rectangular piece of paper is folded n+1 times along alternate orthogonal directions and then unfolded. - Quim Castellsaguer (qcastell(AT)pie.xtec.es), Dec 30 1999
Also the number of binary strings with the property that, when scanning from left to right, once the first 1 is seen in position j, there must be a 1 in positions j+2, j+4, ... until the end of the string. (Positions j+1, j+3, ... can be occupied by 0 or 1.) - Jeffrey Shallit, Sep 02 2002
a(n-1) is also the Moore lower bound on the order of a (3,n)-cage. - Eric W. Weisstein, May 20 2003 and Jason Kimberley, Oct 30 2011
Partial sums of A016116. - Hieronymus Fischer, Sep 15 2007
Equals row sums of triangle A152201. - Gary W. Adamson, Nov 29 2008
From John P. McSorley, Sep 28 2010: (Start)
a(n) = DPE(n+1) is the total number of k-double-palindromes of n up to cyclic equivalence. See sequence A180918 for the definitions of a k-double-palindrome of n and of cyclic equivalence. Sequence A180918 is the 'DPE(n,k)' triangle read by rows where DPE(n,k) is the number of k-double-palindromes of n up to cyclic equivalence. For example, we have a(4) = DPE(5) = DPE(5,1) + DPE(5,2) + DPE(5,3) + DPE(5,4) + DPE(5,5) = 0 + 2 + 2 + 1 + 1 = 6.
The 6 double-palindromes of 5 up to cyclic equivalence are 14, 23, 113, 122, 1112, 11111. They come from cyclic equivalence classes {14,41}, {23,32}, {113,311,131}, {122,212,221}, {1112,2111,1211,1121}, and {11111}. Hence a(n)=DPE(n+1) is the total number of cyclic equivalence classes of n containing at least one double-palindrome.
(End)
From Herbert Eberle, Oct 02 2015: (Start)
For n > 0, there is a red-black tree of height n with a(n-1) internal nodes and none with less.
In order a red-black tree of given height has minimal number of nodes, it has exactly 1 path with strictly alternating red and black nodes. All nodes outside this height defining path are black.
Consider:
mrbt5 R
/ \
/ \
/ \
/ B
/ / \
mrbt4 B / B
/ \ B E E
/ B E E
mrbt3 R E E
/ \
/ B
mrbt2 B E E
/ E
mrbt1 R
E E
(Red nodes shown as R, blacks as B, externals as E.)
Red-black trees mrbt1, mrbt2, mrbt3, mrbt4, mrbt5 of respective heights h = 1, 2, 3, 4, 5; all minimal in the number of internal nodes, namely 1, 2, 4, 6, 10.
Recursion (let n = h-1): a(-1) = 0, a(n) = a(n-1) + 2^floor(n/2), n >= 0.
(End)
Also the number of strings of length n with the digits 1 and 2 with the property that the sum of the digits of all substrings of uneven length is not divisible by 3. An example with length 8 is 21221121. - Herbert Kociemba, Apr 29 2017
a(n-2) is the number of achiral n-bead necklaces or bracelets using exactly two colors. For n=4, the four arrangements are AAAB, AABB, ABAB, and ABBB. - Robert A. Russell, Sep 26 2018
Partial sums of powers of 2 repeated 2 times, like A200672 where is 3 times. - Yuchun Ji, Nov 16 2018
Also the number of binary words of length n with cuts-resistance <= 2, where, for the operation of shortening all runs by one, cuts-resistance is the number of applications required to reach an empty word. Explicitly, these are words whose sequence of run-lengths, all of which are 1 or 2, has no odd-length run of 1's sandwiched between two 2's. - Gus Wiseman, Nov 28 2019
Also the number of up-down paths with n steps such that the height difference between the highest and lowest points is at most 2. - Jeremy Dover, Jun 17 2020
Also the number of non-singleton integer compositions of n + 2 with no odd part other than the first or last. Including singletons gives A052955. This is an unsorted (or ordered) version of A351003. The version without even (instead of odd) interior parts is A001911, complement A232580. Note that A000045(n-1) counts compositions without odd parts, with non-singleton case A077896, and A052952/A074331 count non-singleton compositions without even parts. Also the number of compositions y of n + 1 such that y_i = y_{i+1} for all even i. - Gus Wiseman, Feb 19 2022

Examples

			After 3 folds one sees 4 fold lines.
Example: a(3) = 6 because the strings 001, 010, 100, 011, 101, 110 have the property.
Binary: 1, 10, 100, 110, 1010, 1110, 10110, 11110, 101110, 111110, 1011110, 1111110, 10111110, 11111110, 101111110, 111111110, 1011111110, 1111111110, 10111111110, ... - _Jason Kimberley_, Nov 02 2011
Example: Partial sums of powers of 2 repeated 2 times:
a(3) = 1+1+2 = 4;
a(4) = 1+1+2+2 = 6;
a(5) = 1+1+2+2+4 = 10.
_Yuchun Ji_, Nov 16 2018
		

References

  • John P. McSorley: Counting k-compositions of n with palindromic and related structures. Preprint, 2010. [John P. McSorley, Sep 28 2010]

Crossrefs

Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), this sequence (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7). - Jason Kimberley, Oct 30 2011
Cf. A000066 (actual order of a (3,g)-cage).
Bisections are A033484 (even) and A000918 (odd).
a(n) = A305540(n+2,2), the second column of the triangle.
Numbers whose binary expansion is a balanced word are A330029.
Binary words counted by cuts-resistance are A319421 or A329860.
The complementary compositions are counted by A274230(n-1) + 1, with bisections A060867 (even) and A134057 (odd).
Cf. A000346, A000984, A001405, A001700, A011782 (compositions).
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022

Programs

  • Haskell
    import Data.List (transpose)
    a027383 n = a027383_list !! n
    a027383_list = concat $ transpose [a033484_list, drop 2 a000918_list]
    -- Reinhard Zumkeller, Jun 17 2015
    
  • Magma
    [2^Floor((n+2)/2)+2^Floor((n+1)/2)-2: n in [0..50]]; // Vincenzo Librandi, Aug 16 2011
    
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=2*a[n-2]+2 od: seq(a[n], n=1..41); # Zerinvary Lajos, Mar 16 2008
  • Mathematica
    a[n_?EvenQ] := 3*2^(n/2)-2; a[n_?OddQ] := 2^(2+(n-1)/2)-2; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 21 2011, after Quim Castellsaguer *)
    LinearRecurrence[{1, 2, -2}, {1, 2, 4}, 41] (* Robert G. Wilson v, Oct 06 2014 *)
    Table[Length[Select[Tuples[{0,1},n],And[Max@@Length/@Split[#]<=2,!MatchQ[Length/@Split[#],{_,2,ins:1..,2,_}/;OddQ[Plus[ins]]]]&]],{n,0,15}] (* Gus Wiseman, Nov 28 2019 *)
  • PARI
    a(n)=2^(n\2+1)+2^((n+1)\2)-2 \\ Charles R Greathouse IV, Oct 21 2011
    
  • Python
    def a(n): return 2**((n+2)//2) + 2**((n+1)//2) - 2
    print([a(n) for n in range(43)]) # Michael S. Branicky, Feb 19 2022

Formula

a(0)=1, a(1)=2; thereafter a(n+2) = 2*a(n) + 2.
a(2n) = 3*2^n - 2 = A033484(n);
a(2n-1) = 2^(n+1) - 2 = A000918(n+1).
G.f.: (1 + x)/((1 - x)*(1 - 2*x^2)). - David Callan, Jul 22 2008
a(n) = Sum_{k=0..n} 2^min(k, n-k).
a(n) = 2^floor((n+2)/2) + 2^floor((n+1)/2) - 2. - Quim Castellsaguer (qcastell(AT)pie.xtec.es)
a(n) = 2^(n/2)*(3 + 2*sqrt(2) + (3-2*sqrt(2))*(-1)^n)/2 - 2. - Paul Barry, Apr 23 2004
a(n) = A132340(A052955(n)). - Reinhard Zumkeller, Aug 20 2007
a(n) = A052955(n+1) - 1. - Hieronymus Fischer, Sep 15 2007
a(n) = A132666(a(n+1)) - 1. - Hieronymus Fischer, Sep 15 2007
a(n) = A132666(a(n-1)+1) for n > 0. - Hieronymus Fischer, Sep 15 2007
A132666(a(n)) = a(n-1) + 1 for n > 0. - Hieronymus Fischer, Sep 15 2007
G.f.: (1 + x)/((1 - x)*(1 - 2*x^2)). - David Callan, Jul 22 2008
a(n) = 2*( (a(n-2)+1) mod (a(n-1)+1) ), n > 1. - Pierre Charland, Dec 12 2010
a(n) = A136252(n-1) + 1, for n > 0. - Jason Kimberley, Nov 01 2011
G.f.: (1+x*R(0))/(1-x), where R(k) = 1 + 2*x/( 1 - x/(x + 1/R(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 16 2013
a(n) = 2^((2*n + 3*(1-(-1)^n))/4)*3^((1+(-1)^n)/2) - 2. - Luce ETIENNE, Sep 01 2014
a(n) = a(n-1) + 2^floor((n-1)/2) for n>0, a(0)=1. - Yuchun Ji, Nov 23 2018
E.g.f.: 3*cosh(sqrt(2)*x) - 2*cosh(x) + 2*sqrt(2)*sinh(sqrt(2)*x) - 2*sinh(x). - Stefano Spezia, Apr 06 2022

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 24 2000
Replaced definition with a simpler one. - N. J. A. Sloane, Jul 09 2022

A096441 Number of palindromic and unimodal compositions of n. Equivalently, the number of orbits under conjugation of even nilpotent n X n matrices.

Original entry on oeis.org

1, 2, 2, 4, 3, 7, 5, 11, 8, 17, 12, 26, 18, 37, 27, 54, 38, 76, 54, 106, 76, 145, 104, 199, 142, 266, 192, 357, 256, 472, 340, 621, 448, 809, 585, 1053, 760, 1354, 982, 1740, 1260, 2218, 1610, 2818, 2048, 3559, 2590, 4485, 3264, 5616, 4097, 7018, 5120, 8728, 6378
Offset: 1

Views

Author

Nolan R. Wallach (nwallach(AT)ucsd.edu), Aug 10 2004

Keywords

Comments

Number of partitions of n such that all differences between successive parts are even, see example. [Joerg Arndt, Dec 27 2012]
Number of partitions of n where either all parts are odd or all parts are even. - Omar E. Pol, Aug 16 2013
From Gus Wiseman, Jan 13 2022: (Start)
Also the number of integer partitions of n with all even multiplicities (or run-lengths) except possibly the first. These are the conjugates of the partitions described by Joerg Arndt above. For example, the a(1) = 1 through a(8) = 11 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (311) (33) (322) (44)
(211) (11111) (222) (511) (422)
(1111) (411) (31111) (611)
(2211) (1111111) (2222)
(21111) (3311)
(111111) (22211)
(41111)
(221111)
(2111111)
(11111111)
(End)

Examples

			From _Joerg Arndt_, Dec 27 2012: (Start)
There are a(10)=17 partitions of 10 where all differences between successive parts are even:
[ 1]  [ 1 1 1 1 1 1 1 1 1 1 ]
[ 2]  [ 2 2 2 2 2 ]
[ 3]  [ 3 1 1 1 1 1 1 1 ]
[ 4]  [ 3 3 1 1 1 1 ]
[ 5]  [ 3 3 3 1 ]
[ 6]  [ 4 2 2 2 ]
[ 7]  [ 4 4 2 ]
[ 8]  [ 5 1 1 1 1 1 ]
[ 9]  [ 5 3 1 1 ]
[10]  [ 5 5 ]
[11]  [ 6 2 2 ]
[12]  [ 6 4 ]
[13]  [ 7 1 1 1 ]
[14]  [ 7 3 ]
[15]  [ 8 2 ]
[16]  [ 9 1 ]
[17]  [ 10 ]
(End)
		

References

  • A. G. Elashvili and V. G. Kac, Classification of good gradings of simple Lie algebras. Lie groups and invariant theory, 85-104, Amer. Math. Soc. Transl. Ser. 2, 213, Amer. Math. Soc., Providence, RI, 2005.

Crossrefs

Bisections are A078408 and A096967.
The complement in partitions is counted by A006477
A version for compositions is A016116.
A pointed version is A035363, ranked by A066207.
A000041 counts integer partitions.
A025065 counts palindromic partitions.
A027187 counts partitions with even length/maximum.
A035377 counts partitions using multiples of 3.
A058696 counts partitions of even numbers, ranked by A300061.
A340785 counts factorizations into even factors.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i>n, 0,
          `if`(irem(n, i)=0, 1, 0) +add(`if`(irem(j, 2)=0,
           b(n-i*j, i+1), 0), j=0..n/i))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=1..60);  # Alois P. Heinz, Mar 26 2014
  • Mathematica
    (* The following Mathematica program first generates all of the palindromic, unimodal compositions of n and then counts them. *)
    Pal[n_] := Block[{i, j, k, m, Q, L}, If[n == 1, Return[{{1}}]]; If[n == 2, Return[{{1, 1}, {2}}]]; L = {{n}}; If[Mod[n, 2] == 0, L = Append[L, {n/2, n/2}]]; For[i = 1, i < n, i++, Q = Pal[n - 2i]; m = Length[Q]; For[j = 1, j <= m, j++, If[i <= Q[[j, 1]], L = Append[L, Append[Prepend[Q[[j]], i], i]]]]]; L] NoPal[n_] := Length[Pal[n]]
    a[n_] := PartitionsQ[n] + If[EvenQ[n], PartitionsP[n/2], 0]; Table[a[n], {n, 1, 55}] (* Jean-François Alcover, Mar 17 2014, after Vladeta Jovovic *)
    Table[Length[Select[IntegerPartitions[n],And@@EvenQ/@Rest[Length/@Split[#]]&]],{n,1,30}] (* Gus Wiseman, Jan 13 2022 *)
  • PARI
    my(x='x+O('x^66)); Vec(eta(x^2)/eta(x)+1/eta(x^2)-2) \\ Joerg Arndt, Jan 17 2016

Formula

G.f.: sum(j>=1, q^j * (1-q^j)/prod(i=1..j, 1-q^(2*i) ) ).
G.f.: F + G - 2, where F = Product_{j>=1} 1/(1-q^(2*j)), G = Product_{j>=0} 1/(1-q^(2*j+1)).
a(2*n) = A000041(n) + A000009(2*n); a(2*n-1) = A000009(2*n-1). - Vladeta Jovovic, Aug 11 2004
a(n) = A000009(n) + A035363(n) = A000041(n) - A006477(n). - Omar E. Pol, Aug 16 2013

A349060 Number of integer partitions of n that are constant or whose part multiplicities, except possibly the first and last, are all even.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 13, 18, 22, 29, 35, 45, 53, 68, 77, 98, 112, 140, 157, 195, 218, 270, 298, 367, 404, 495, 542, 658, 721, 873, 949, 1145, 1245, 1494, 1615, 1934, 2091, 2492, 2688, 3188, 3436, 4068, 4369, 5155, 5537, 6511, 6976, 8186, 8763, 10251, 10962
Offset: 0

Views

Author

Gus Wiseman, Dec 06 2021

Keywords

Comments

Also the number of weakly alternating integer partitions of n, where we define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. This sequence looks at the somewhat degenerate case where no strict increases are allowed.

Examples

			The a(1) = 1 through a(7) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (221)    (51)      (61)
                    (1111)  (311)    (222)     (322)
                            (2111)   (411)     (331)
                            (11111)  (2211)    (511)
                                     (3111)    (2221)
                                     (21111)   (4111)
                                     (111111)  (22111)
                                               (31111)
                                               (211111)
                                               (1111111)
		

Crossrefs

Alternating: A025047, ranked by A345167, also A025048 and A025049.
The strong case is A065033, ranked by A167171.
A directed version is A096441.
Non-alternating: A345192, ranked by A345168.
Weakly alternating: A349052, also A129852 and A129853.
Non-weakly alternating: A349053, ranked by A349057.
A version for ordered factorizations is A349059, strong A348610.
The complement is counted by A349061, strong A349801.
These partitions are ranked by the complement of A349794.
The non-strict case is A349795.
A000041 counts integer partitions, ordered A011782.
A001250 counts alternating permutations, complement A348615.
A344604 counts alternating compositions with twins.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], SameQ@@#||And@@EvenQ/@Take[Length/@Split[#],{2,-2}]&]],{n,0,30}]
  • PARI
    A_x(N)={my(x='x+O('x^N), g= 1 + sum(i=1, N, (x^i/(1-x^i)) * (1 + sum(j=i+1, N-i, (x^j/((1-x^j))) / prod(k=1, j-i-1, 1-x^(2*(i+k)))))));
    Vec(g)}
    A_x(52) \\ John Tyler Rascoe, Mar 20 2024

Formula

G.f.: 1 + Sum_{i>0} (x^i/(1-x^i)) * (1 + Sum_{j>i} (x^j/(1-x^j)) / Product_{k=1..j-i-1} (1-x^(2*(i+k)))). - John Tyler Rascoe, Mar 20 2024

A349061 Number of integer partitions of n with at least one part of odd multiplicity that is not the first or last.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 2, 4, 8, 13, 21, 32, 48, 67, 99, 133, 185, 245, 333, 432, 574, 732, 957, 1208, 1554, 1941, 2468, 3060, 3844, 4731, 5893, 7204, 8898, 10816, 13268, 16043, 19546, 23523, 28497, 34150, 41147, 49106, 58892, 70020, 83597, 99047, 117778, 139087
Offset: 0

Views

Author

Gus Wiseman, Dec 06 2021

Keywords

Comments

Also the number of non-weakly alternating integer partitions of n, where we define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. This sequence looks at the somewhat degenerate case where no strict increases are allowed.

Examples

			The a(6) = 1 through a(10) = 13 partitions:
  (321)  (421)   (431)    (432)     (532)
         (3211)  (521)    (531)     (541)
                 (4211)   (621)     (631)
                 (32111)  (3321)    (721)
                          (4311)    (4321)
                          (5211)    (5311)
                          (42111)   (6211)
                          (321111)  (32221)
                                    (33211)
                                    (43111)
                                    (52111)
                                    (421111)
                                    (3211111)
		

Crossrefs

The strong version for compositions is A345192, ranked by A345168.
The version for compositions is A349053, ranked by A349057.
The complement is counted by A349060.
These partitions are ranked by A349794.
The non-strict case is A349796, complement A349795.
The strong case is A349801.
A000041 counts integer partitions.
A001250 counts alternating permutations, complement A348615.
A003242 counts Carlitz (anti-run) compositions.
A025047 counts alternating compositions, ranked by A345167.
A025048 and A025049 count directed alternating compositions.
A096441 counts weakly alternating 0-appended partitions.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A349052 counts weakly alternating compositions.
A349056 counts weakly alternating permutations of prime indices.
A349798 counts weakly but not strongly alternating perms of prime indices.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], !SameQ@@#&&!And@@EvenQ/@Take[Length/@Split[#],{2,-2}]&]],{n,0,30}]

A349800 Number of integer compositions of n that are weakly alternating and have at least two adjacent equal parts.

Original entry on oeis.org

0, 0, 1, 1, 4, 9, 16, 33, 62, 113, 205, 373, 664, 1190, 2113, 3744, 6618, 11683, 20564, 36164, 63489, 111343, 195042, 341357, 596892, 1042976, 1821179, 3178145, 5543173, 9663545, 16839321, 29332231, 51075576, 88908912, 154722756, 269186074, 468221264
Offset: 0

Views

Author

Gus Wiseman, Dec 16 2021

Keywords

Comments

We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.
This sequence counts compositions that are weakly but not strongly alternating; also weakly alternating non-anti-run compositions.

Examples

			The a(2) = 1 through a(6) = 16 compositions:
  (1,1)  (1,1,1)  (2,2)      (1,1,3)      (3,3)
                  (1,1,2)    (1,2,2)      (1,1,4)
                  (2,1,1)    (2,2,1)      (2,2,2)
                  (1,1,1,1)  (3,1,1)      (4,1,1)
                             (1,1,1,2)    (1,1,1,3)
                             (1,1,2,1)    (1,1,2,2)
                             (1,2,1,1)    (1,1,3,1)
                             (2,1,1,1)    (1,3,1,1)
                             (1,1,1,1,1)  (2,2,1,1)
                                          (3,1,1,1)
                                          (1,1,1,1,2)
                                          (1,1,1,2,1)
                                          (1,1,2,1,1)
                                          (1,2,1,1,1)
                                          (2,1,1,1,1)
                                          (1,1,1,1,1,1)
		

Crossrefs

This is the weakly alternating case of A345192, ranked by A345168.
The case of partitions is A349795, ranked by A350137.
The version counting permutations of prime indices is A349798.
These compositions are ranked by A349799.
A001250 = alternating permutations, ranked by A349051, complement A348615.
A003242 = Carlitz (anti-run) compositions, ranked by A333489.
A025047/A025048/A025049 = alternating compositions, ranked by A345167.
A261983 = non-anti-run compositions, ranked by A348612.
A345165 = partitions without an alternating permutation, ranked by A345171.
A345170 = partitions with an alternating permutation, ranked by A345172.
A345173 = non-alternating anti-run partitions, ranked by A345166.
A345195 = non-alternating anti-run compositions, ranked by A345169.
A348377 = non-alternating non-twin compositions.
A349801 = non-alternating partitions, ranked by A289553.
Weakly alternating:
- A349052 = compositions, directed A129852/A129853, complement A349053.
- A349056 = permutations of prime indices, complement A349797.
- A349057 = complement of standard composition numbers (too dense).
- A349058 = patterns, complement A350138.
- A349059 = ordered factorizations, complement A350139.
- A349060 = partitions, complement A349061.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y] &&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],(whkQ[#]||whkQ[-#])&&!wigQ[#]&]],{n,0,10}]

Formula

a(n) = A349052(n) - A025047(n). - Andrew Howroyd, Jan 31 2024

Extensions

a(21) onwards from Andrew Howroyd, Jan 31 2024

A350252 Number of non-alternating patterns of length n.

Original entry on oeis.org

0, 0, 1, 7, 53, 439, 4121, 43675, 519249, 6867463, 100228877, 1602238783, 27866817297, 524175098299, 10606844137009, 229807953097903, 5308671596791901, 130261745042452855, 3383732450013895721, 92770140175473602755, 2677110186541556215233
Offset: 0

Views

Author

Gus Wiseman, Jan 13 2022

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). An alternating pattern is necessarily an anti-run (A005649).
Conjecture: Also the number of non-weakly up/down (or down/up) patterns of length n. For example:
- The a(3) = 7 non-weakly up/down patterns:
(121), (122), (123), (132), (221), (231), (321)
- The a(3) = 7 non-weakly down/up patterns:
(112), (123), (211), (212), (213), (312), (321)
- The a(3) = 7 non-alternating patterns (see example for more):
(111), (112), (122), (123), (211), (221), (321)

Examples

			The a(2) = 1 and a(3) = 7 non-alternating patterns:
  (1,1)  (1,1,1)
         (1,1,2)
         (1,2,2)
         (1,2,3)
         (2,1,1)
         (2,2,1)
         (3,2,1)
The a(4) = 53 non-alternating patterns:
  2112   3124   4123   1112   2134   1234   3112   2113   1123
  2211   3214   4213   1211   2314   1243   3123   2123   1213
  2212   3412   4312   1212   2341   1324   3211   2213   1223
         3421   4321   1221   2413   1342   3212   2311   1231
                       1222   2431   1423   3213   2312   1232
                                     1432   3312   2313   1233
                                            3321   2321   1312
                                                   2331   1321
                                                          1322
                                                          1323
                                                          1332
		

Crossrefs

The unordered version is A122746.
The version for compositions is A345192, ranked by A345168, weak A349053.
The complement is counted by A345194, weak A349058.
The version for factorizations is A348613, complement A348610, weak A350139.
The strict case (permutations) is A348615, complement A001250.
The weak version for partitions is A349061, complement A349060.
The weak version for perms of prime indices is A349797, complement A349056.
The weak version is A350138.
The version for perms of prime indices is A350251, complement A345164.
A000670 = patterns (ranked by A333217).
A003242 = anti-run compositions, complement A261983, ranked by A333489.
A005649 = anti-run patterns, complement A069321.
A019536 = necklace patterns.
A025047/A129852/A129853 = alternating compositions, ranked by A345167.
A226316 = patterns avoiding (1,2,3), weakly A052709, complement A335515.
A345163 = normal partitions w/ alternating permutation, complement A345162.
A345170 = partitions w/ alternating permutation, complement A345165.
A349055 = normal multisets w/ alternating permutation, complement A349050.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&& Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[Join@@Permutations/@allnorm[n],!wigQ[#]&]],{n,0,6}]

Formula

a(n) = A000670(n) - A345194(n).

Extensions

Terms a(9) and beyond from Andrew Howroyd, Feb 04 2022

A349795 Number of non-strict integer partitions of n that are constant or whose part multiplicities, except possibly the first and last, are all even.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 7, 9, 14, 17, 24, 29, 39, 46, 61, 69, 90, 103, 131, 147, 185, 207, 259, 286, 355, 391, 482, 528, 644, 706, 858, 933, 1129, 1228, 1477, 1597, 1916, 2072, 2473, 2668, 3168, 3415, 4047, 4347, 5133, 5514, 6488, 6952, 8162, 8738, 10226, 10936
Offset: 0

Views

Author

Gus Wiseman, Dec 06 2021

Keywords

Comments

Also the number of weakly alternating non-strict integer partitions of n, where we define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. This sequence looks at the somewhat degenerate case where no strict increases are allowed. Equivalently, these are partitions that are weakly alternating but not strongly alternating.

Examples

			The a(2) = 1 through a(8) = 14 partitions:
  (11)  (111)  (22)    (221)    (33)      (322)      (44)
               (211)   (311)    (222)     (331)      (332)
               (1111)  (2111)   (411)     (511)      (422)
                       (11111)  (2211)    (2221)     (611)
                                (3111)    (4111)     (2222)
                                (21111)   (22111)    (3221)
                                (111111)  (31111)    (3311)
                                          (211111)   (5111)
                                          (1111111)  (22211)
                                                     (41111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

This is the restriction of A349060 to non-strict partitions.
The complement in non-strict partitions is A349796.
Permutations of prime factors of this type are counted by A349798.
The ordered version (compositions) is A349800, ranked by A349799.
These partitions are ranked by A350137.
A000041 counts integer partitions, non-strict A047967.
A001250 counts alternating permutations, complement A348615.
A025047 counts alternating compositions, also A025048 and A025049.
A096441 counts weakly alternating 0-appended partitions.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A349053 counts non-weakly alternating compositions, complement A349052.
A349061 counts non-weakly alternating partitions, ranked by A349794.
A349801 counts non-alternating partitions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!UnsameQ@@#&&(SameQ@@#||And@@EvenQ/@Take[Length/@Split[#],{2,-2}])&]],{n,0,30}]

Formula

a(n > 0) = A349060(n) - A065033(n) = A349060(n) - floor(n/2).
a(n) = A047967(n) - A349796(n).

A349796 Number of non-strict integer partitions of n with at least one part of odd multiplicity that is not the first or last.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 5, 8, 15, 23, 37, 52, 80, 109, 156, 208, 289, 378, 509, 654, 865, 1098, 1425, 1789, 2290, 2852, 3603, 4450, 5569, 6830, 8467, 10321, 12701, 15393, 18805, 22678, 27535, 33057, 39908, 47701, 57304, 68226, 81572, 96766, 115212, 136201
Offset: 0

Views

Author

Gus Wiseman, Dec 25 2021

Keywords

Comments

Also the number of non-weakly alternating non-strict integer partitions of n, where we define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. This sequence involves the somewhat degenerate case where no strict increases are allowed.

Examples

			The a(7) = 1 through a(11) = 15 partitions:
  (3211)  (4211)   (3321)    (5311)     (4322)
          (32111)  (4311)    (6211)     (4421)
                   (5211)    (32221)    (5411)
                   (42111)   (33211)    (6311)
                   (321111)  (43111)    (7211)
                             (52111)    (42221)
                             (421111)   (43211)
                             (3211111)  (53111)
                                        (62111)
                                        (322211)
                                        (332111)
                                        (431111)
                                        (521111)
                                        (4211111)
                                        (32111111)
		

Crossrefs

Counting all non-strict partitions gives A047967.
Signatures of this type are counted by A274230, complement A027383.
The strict instead of non-strict version is A347548, ranked by A350352.
The version for compositions allowing strict is A349053, ranked by A349057.
Allowing strict partitions gives A349061, complement A349060.
The complement in non-strict partitions is A349795.
These partitions are ranked by A350140 = A349794 \ A005117.
A000041 = integer partitions, strict A000009.
A001250 = alternating permutations, complement A348615.
A003242 = Carlitz (anti-run) compositions.
A025047 = alternating compositions, ranked by A345167.
A025048/A025049 = directed alternating compositions.
A096441 = weakly alternating 0-appended partitions.
A345170 = partitions w/ an alternating permutation, ranked by A345172.
A349052 = weakly alternating compositions.
A349056 = weakly alternating permutations of prime indices.
A349798 = weakly but not strongly alternating permutations of prime indices.

Programs

  • Mathematica
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[IntegerPartitions[n],!whkQ[#]&&!whkQ[-#]&&!UnsameQ@@#&]],{n,0,30}]

Formula

a(n) = A349061(n) - A347548(n).

A349794 Numbers whose prime signature has an odd term other than the first or last.

Original entry on oeis.org

30, 42, 60, 66, 70, 78, 84, 102, 105, 110, 114, 120, 130, 132, 138, 140, 150, 154, 156, 165, 168, 170, 174, 182, 186, 190, 195, 204, 210, 220, 222, 228, 230, 231, 238, 240, 246, 255, 258, 260, 264, 266, 270, 273, 276, 280, 282, 285, 286, 290, 294, 300, 308
Offset: 1

Views

Author

Gus Wiseman, Dec 06 2021

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.
Also numbers whose multiset of prime factors is not weakly alternating, where we define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. This sequence looks at the somewhat degenerate case where no strict decreases are allowed.

Examples

			The terms and their prime indices begin:
   30: {1,2,3}
   42: {1,2,4}
   60: {1,1,2,3}
   66: {1,2,5}
   70: {1,3,4}
   78: {1,2,6}
   84: {1,1,2,4}
  102: {1,2,7}
  105: {2,3,4}
  110: {1,3,5}
  114: {1,2,8}
  120: {1,1,1,2,3}
  130: {1,3,6}
  132: {1,1,2,5}
  138: {1,2,9}
		

Crossrefs

The complement for compositions is A025047, ranked by A345167.
Signatures of this type are counted by A274230, complement A027383.
The strong case is A289553, complement A167171.
The strong case for compositions is A345192, ranked by A345168.
The version for compositions is A349053, ranked by A349057.
These partitions are counted by A349061, complement A349060, strong A349801.
The non-strict case is counted by A349795.
A001250 counts alternating permutations, complement A348615.
A096441 counts weakly alternating partitions if 0 is appended.
A345164 counts alternating permutations of prime indices, weak A349056.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A349052 counts weakly alternating compositions.
A349059 counts weakly alternating ordered factorizations, strong A348610.

Programs

  • Mathematica
    Select[Range[100],PrimeNu[#]>1&&!And@@EvenQ/@Take[Last/@FactorInteger[#],{2,-2}]&]

A350138 Number of non-weakly alternating patterns of length n.

Original entry on oeis.org

0, 0, 0, 2, 32, 338, 3560, 40058, 492664, 6647666, 98210192, 1581844994, 27642067000, 521491848218, 10572345303576, 229332715217954, 5301688511602448, 130152723055769810, 3381930236770946120, 92738693031618794378, 2676532576838728227352
Offset: 0

Views

Author

Gus Wiseman, Dec 24 2021

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.
We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.
Conjecture: The directed cases, which count non-weakly up/down or non-weakly down/up patterns, are both equal to the strong case: A350252.

Examples

			The a(4) = 32 patterns:
  (1,1,2,3)  (2,1,1,2)  (3,1,1,2)  (4,1,2,3)
  (1,2,2,1)  (2,1,1,3)  (3,1,2,3)  (4,2,1,3)
  (1,2,3,1)  (2,1,2,3)  (3,1,2,4)  (4,3,1,2)
  (1,2,3,2)  (2,1,3,4)  (3,2,1,1)  (4,3,2,1)
  (1,2,3,3)  (2,3,2,1)  (3,2,1,2)
  (1,2,3,4)  (2,3,3,1)  (3,2,1,3)
  (1,2,4,3)  (2,3,4,1)  (3,2,1,4)
  (1,3,2,1)  (2,4,3,1)  (3,3,2,1)
  (1,3,3,2)             (3,4,2,1)
  (1,3,4,2)
  (1,4,3,2)
		

Crossrefs

The unordered version is A274230, complement A052955.
The strong case of compositions is A345192, ranked by A345168.
The strict case is A348615, complement A001250.
For compositions we have A349053, complement A349052, ranked by A349057.
The complement is counted by A349058.
The version for partitions is A349061, complement A349060.
The version for permutations of prime indices: A349797, complement A349056.
The version for ordered factorizations is A350139, complement A349059.
The strong case is A350252, complement A345194. Also the directed case?
A003242 = Carlitz compositions, complement A261983, ranked by A333489.
A005649 = anti-run patterns, complement A069321.
A025047/A129852/A129853 = alternating compositions, ranked by A345167.
A345163 = normal partitions w/ alternating permutation, complement A345162.
A345170 = partitions w/ alternating permutation, complement A345165.
A349055 = normal multisets w/ alternating permutation, complement A349050.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@allnorm[n],!whkQ[#]&&!whkQ[-#]&]],{n,0,6}]
  • PARI
    R(n,k)={my(v=vector(k,i,1), u=vector(n)); for(r=1, n, if(r%2==0, my(s=v[k]); forstep(i=k, 2, -1, v[i] = s - v[i-1]); v[1] = s); for(i=2, k, v[i] += v[i-1]); u[r]=v[k]); u}
    seq(n)= {concat([0], vector(n,i,1) + sum(k=1, n, (vector(n,i,k^i) - 2*R(n, k))*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ) )} \\ Andrew Howroyd, Jan 13 2024

Formula

a(n) = A000670(n) - A349058(n).

Extensions

a(9) onwards from Andrew Howroyd, Jan 13 2024
Showing 1-10 of 19 results. Next