cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A052551 Expansion of 1/((1 - x)*(1 - 2*x^2)).

Original entry on oeis.org

1, 1, 3, 3, 7, 7, 15, 15, 31, 31, 63, 63, 127, 127, 255, 255, 511, 511, 1023, 1023, 2047, 2047, 4095, 4095, 8191, 8191, 16383, 16383, 32767, 32767, 65535, 65535, 131071, 131071, 262143, 262143, 524287, 524287, 1048575, 1048575, 2097151, 2097151
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Equals row sums of triangle A137865. - Gary W. Adamson, Feb 18 2008
Also, the decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 566", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Jul 05 2017
Number of nonempty subsets of {1,2,...,n+1} that contain only odd numbers. a(0) = a(1) = 1: {1}; a(6) = a(7) = 15: {1}, {3}, {5}, {7}, {1,3}, {1,5}, {1,7}, {3,5}, {3,7}, {5,7}, {1,3,5}, {1,3,7}, {1,5,7}, {3,5,7}, {1,3,5,7}. - Enrique Navarrete, Mar 16 2018
Number of nonempty subsets of {1,2,...,n+2} that contain only even numbers. a(0) = a(1) = 1: {2}; a(4) = a(5) = 7: {2}, {4}, {6}, {2,4}, {2,6}, {4,6}, {2,4,6}. - Enrique Navarrete, Mar 26 2018
Doubling of A000225(n+1), n >= 0 entries. First differences give A077957. - Wolfdieter Lang, Apr 08 2018
a(n-2) is the number of achiral rows or cycles of length n partitioned into two sets or the number of color patterns using exactly 2 colors. An achiral row or cycle is equivalent to its reverse. Two color patterns are equivalent if the colors are permuted. For n = 4, the a(n-2) = 3 row patterns are AABB, ABAB, and ABBA; the cycle patterns are AAAB, AABB, and ABAB. For n = 5, the a(n-2) = 3 patterns for both rows and cycles are AABAA, ABABA, and ABBBA. For n = 6, the a(n-2) = 7 patterns for rows are AAABBB, AABABB, AABBAA, ABAABA, ABABAB, ABBAAB, and ABBBBA; the cycle patterns are AAAAAB, AAAABB, AAABAB, AAABBB, AABAAB, AABABB, and ABABAB. - Robert A. Russell, Oct 15 2018
For integers m > 1, the expansion of 1/((1 - x)*(1 - m*x^2)) generates a(n) = (sqrt(m)^(n + 1)*((-1)^n*(sqrt(m) - 1) + sqrt(m) + 1) - 2)/(2*(m - 1)). It appears, for integer values of n >= 0 and m > 1, that it could be simplified in the integral domain a(n) = (m^(1 + floor(n/2)) - 1)/(m - 1). - Federico Provvedi, Nov 23 2018
From Werner Schulte, Mar 04 2019: (Start)
More generally: For some fixed integers q and r > 0 the expansion of A(q,r; x) = 1/((1-x)*(1-q*x^r)) generates coefficients a(q,r; n) = (q^(1+floor(n/r))-1)/(q-1) for n >= 0; the special case q = 1 leads to a(1,r; n) = 1 + floor(n/r).
The a(q,r; n) satisfy for n > r a linear recurrence equation with constant coefficients. The signature vector is given by the sum of two vectors v and w where v has terms 1 followed by r zeros, i.e., (1,0,0,...,0), and w has r-1 leading zeros followed by q and -q, i.e., (0,0,...,0,q,-q).
Let a_i(q,r; n) be the convolution inverse of a(q,r; n). The terms are given by the sum a_i(q,r; n) = b(n) + c(n) for n >= 0 where b(n) has terms 1 and -1 followed by infinitely zeros, i.e., (1,-1,0,0,0,...), and c(n) has r leading zeros followed by -q, q and infinitely zeros, i.e., (0,0,...,0,-q,q,0,0,0,...).
Here is an example for q = 3 and r = 5: The expansion of A(3,5; x) = 1/((1-x)*(1-3*x^5)) = Sum_{n>=0} a(3,5; n)*x^n generates the sequence of coefficients (a(3,5; n)) = (1,1,1,1,1,4,4,4,4,4,13,13,13,13,13,40,...) where r = 5 controls the repetition and q = 3 the different values.
The a(3,5; n) satisfy for n > 5 the linear recurrence equation with constant coefficients and signature (1,0,0,0,0,0) + (0,0,0,0,3,-3) = (1,0,0,0,3,-3).
The convolution inverse a_i(3,5; n) has terms (1,-1,0,0,0,0,0,0,0,...) + (0,0,0,0,0,-3,3,0,0,...) = (1,-1,0,0,0,-3,3,0,0,...).
For further examples and informations see A014983 (q,r = -3,1), A077925 (q,r = -2,1), A000035 (q,r = -1,1), A000012 (q,r = 0,1), A000027 (q,r = 1,1), A000225 (q,r = 2,1), A003462 (q,r = 3,1), A077953 (q,r = -2,2), A133872 (q,r = -1,2), A004526 (q,r = 1,2), A052551 (this sequence with q,r = 2,2), A077886 (q,r = -2,3), A088911 (q,r = -1,3), A002264 (q,r = 1,3) and A077885 (q,r = 2,3). The offsets might be different.
(End)
a(n) is the number of palindromes of length n over the alphabet {1,2} containing the letter 1. More generally, the number of palindromes of length n over the alphabet {1,2,...,k} containing the letter 1 is given by k^ceiling(n/2)-(k-1)^ceiling(n/2). - Sela Fried, Dec 10 2024

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Column 2 (offset by two) of A304972.
Cf. A000225 (oriented), A056326 (unoriented), and A122746(n-2) (chiral) for rows.
Cf. A056295 (oriented), A056357 (unoriented), and A059053 (chiral) for cycles.

Programs

  • GAP
    Flat(List([1..21],n->[2^n-1,2^n-1])); # Muniru A Asiru, Oct 16 2018
    
  • Magma
    [2^Floor(n/2)-1: n in [2..50]]; // Vincenzo Librandi, Aug 16 2011
    
  • Maple
    spec := [S,{S=Prod(Sequence(Prod(Z,Union(Z,Z))),Sequence(Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Table[StirlingS2[Floor[n/2] + 2, 2], {n, 0, 50}] (* Robert A. Russell, Dec 20 2017 *)
    Drop[LinearRecurrence[{1, 2, -2}, {0, 1, 1}, 50], 1] (* Robert A. Russell, Oct 14 2018 *)
    CoefficientList[Series[1/((1-x)*(1-2*x^2)), {x, 0, 50}], x] (* Stefano Spezia, Oct 16 2018 *)
    2^(1+Floor[(Range[0,50])/2])-1 (* Federico Provvedi, Nov 22 2018 *)
    ((-1)^#(Sqrt[2]-1)+Sqrt[2]+1)2^((#-1)/2)-1&@Range[0, 50] (* Federico Provvedi, Nov 23 2018 *)
  • PARI
    x='x+O('x^50); Vec(1/((1-x)*(1-2*x^2))) \\ Altug Alkan, Mar 19 2018
    
  • Sage
    [2^(floor(n/2)) -1 for n in (2..50)] # G. C. Greubel, Mar 04 2019

Formula

G.f.: 1/((1 - x)*(1 - 2*x^2)).
Recurrence: a(1) = 1, a(0) = 1, -2*a(n) - 1 + a(n+2) = 0.
a(n) = -1 + Sum((1/2)*(1 + 2*alpha)*alpha^(-1 - n)) where the sum is over alpha = the two roots of -1 + 2*x^2.
a(n) = A016116(n+2) - 1. - R. J. Mathar, Jun 15 2009
a(n) = A060546(n+1) - 1. - Filip Zaludek, Dec 10 2016
From Robert A. Russell, Oct 15 2018: (Start)
a(n-2) = S2(floor(n/2)+1,2), where S2 is the Stirling subset number A008277.
a(n-2) = 2*A056326(n) - A000225(n) = A000225(n) - 2*A122746(n-2) = A056326(n) - A122746(n-2).
a(n-2) = 2*A056357(n) - A056295(n) = A056295(n) - 2*A059053(n) = A056357(n) - A059053(n). (End)
From Federico Provvedi, Nov 22 2018: (Start)
a(n) = 2^( 1 + floor(n/2) ) - 1.
a(n) = ( (-1)^n*(sqrt(2)-1) + sqrt(2) + 1 ) * 2^( (n - 1)/2 ) - 1. (End)
E.g.f.: 2*cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x) - cosh(x) - sinh(x). - Franck Maminirina Ramaharo, Nov 23 2018

Extensions

More terms from James Sellers, Jun 06 2000

A059076 Number of pairs of orientable necklaces with n beads and two colors; i.e., turning the necklace over does not leave it unchanged.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 2, 6, 14, 30, 62, 128, 252, 495, 968, 1866, 3600, 6917, 13286, 25476, 48916, 93837, 180314, 346554, 666996, 1284570, 2477342, 4781502, 9240012, 17871708, 34604066, 67060746, 130085052, 252548760, 490722344
Offset: 0

Views

Author

Henry Bottomley, Dec 22 2000

Keywords

Comments

Number of chiral bracelets with n beads and two colors.

Examples

			For n=6, the only chiral pair is AABABB-AABBAB.  For n=7, the two chiral pairs are AAABABB-AAABBAB and AABABBB-AABBBAB. - _Robert A. Russell_, Sep 24 2018
		

Crossrefs

Column 2 of A293496.
Cf. A059053.
Column 2 of A305541.
Equals (A000031 - A164090) / 2.
a(n) = (A052823(n) - A027383(n-2)) / 2.

Programs

  • Mathematica
    nn=35;Table[CoefficientList[Series[CycleIndex[CyclicGroup[n],s]-CycleIndex[DihedralGroup[n],s]/.Table[s[i]->2,{i,1,n}],{x,0,nn}],x],{n,1,nn}]//Flatten  (* Geoffrey Critzer, Mar 26 2013 *)
    mx=40; CoefficientList[Series[(1-Sum[ EulerPhi[n]*Log[1-2*x^n]/n, {n, mx}]-(1+x)^2/(1-2*x^2))/2, {x, 0, mx}], x] (* Herbert Kociemba, Nov 02 2016 *)
    terms = 36; a29[0] = 1; a29[n_] := (1/4)*(Mod[n, 2] + 3)*2^Quotient[n, 2] + DivisorSum[n, EulerPhi[#]*2^(n/#) & ]/(2*n); Array[a29, 36, 0] - LinearRecurrence[{0, 2}, {1, 2, 3}, 36] (* Jean-François Alcover, Nov 05 2017 *)
    k = 2; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n)(k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}], 0] (* Robert A. Russell, Sep 24 2018 *)

Formula

a(n) = A000031(n) - A000029(n) = A000029(n) - A029744(n) = (A000031(n) - A029744(n))/2 = A008965(n) - A091696(n)
G.f.: (1 - Sum_{n>=1} phi(n)*log(1 - 2*x^n)/n - (1 + x)^2/(1 - 2*x^2))/2. - Herbert Kociemba, Nov 02 2016
For n > 0, a(n) = -(k^floor((n + 1)/2) + k^ceiling((n + 1)/2))/4 + (1/(2*n))* Sum_{d|n} phi(d)*k^(n/d), where k = 2 is the maximum number of colors. - Robert A. Russell, Sep 24 2018

A320647 Triangle read by rows: T(n,k) is the number of chiral pairs of cycles of length n (1) with a color pattern of exactly k colors or equivalently (2) partitioned into k nonempty subsets.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 1, 12, 17, 4, 0, 0, 0, 2, 44, 84, 51, 9, 0, 0, 0, 7, 137, 388, 339, 125, 15, 0, 0, 0, 12, 408, 1586, 2010, 1054, 258, 24, 0, 0, 0, 31, 1190, 6405, 10900, 7928, 2761, 490, 35, 0, 0, 0, 58, 3416, 24927, 56700, 54383, 25680, 6392, 859, 51, 0, 0, 0, 126, 9730, 96404, 286888, 356594, 218246, 72284, 13472, 1420, 68, 0, 0
Offset: 1

Views

Author

Robert A. Russell, Oct 18 2018

Keywords

Comments

Two color patterns are the same if the colors are permuted. A chiral cycle is different from its reverse.
Adnk[d,n,k] in Mathematica program is coefficient of x^k in A(d,n)(x) in Gilbert and Riordan reference.

Examples

			The triangle begins with T(1,1):
  0;
  0,   0;
  0,   0,    0;
  0,   0,    0,     0;
  0,   0,    0,     0,      0;
  0,   0,    4,     2,      0,      0;
  0,   1,   12,    17,      4,      0,      0;
  0,   2,   44,    84,     51,      9,      0,     0;
  0,   7,  137,   388,    339,    125,     15,     0,     0;
  0,  12,  408,  1586,   2010,   1054,    258,    24,     0,    0;
  0,  31, 1190,  6405,  10900,   7928,   2761,   490,    35,    0,  0;
  0,  58, 3416, 24927,  56700,  54383,  25680,  6392,   859,   51,  0, 0;
  0, 126, 9730, 96404, 286888, 356594, 218246, 72284, 13472, 1420, 68, 0, 0;
  ...
For T(6,3)=4, the chiral pairs are AAABBC-AAABCC, AABABC-AABCAC, AABACB-AABCAB, and AABACC-AABBAC.
For T(6,4)=2, the chiral pairs are AABACD-AABCAD and AABCBD-AABCDC.
		

Crossrefs

Row sums are A320749.
Cf. A152175 (oriented), A152176 (unoriented), A304972 (achiral).

Programs

  • Mathematica
    Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d,Adnk[d,n-1,k-#] &], Boole[n==0 && k==0]]
    Table[DivisorSum[n,EulerPhi[#]Adnk[#,n/#,k]&]/(2n)-Ach[n,k]/2,{n,12},{k,n}] // Flatten
  • PARI
    \\ Ach is A304972 and R is A152175 as square matrices.
    Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
    R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
    T(n)={(R(n) - Ach(n))/2}
    { my(A=T(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019

Formula

T(n,k) = (A152175(n,k) - A304972(n,k)) / 2 = A152175(n,k) - A152176(n,k) = A152176(n,k) - A304972(n,k).
T(n,k) = -Ach(n,k)/2 + (1/2n)*Sum_{d|n} phi(d)*A(d,n/d,k), where Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k)+Ach(n-2,k-1)+Ach(n-2,k-2)) and A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)).

A320742 Array read by antidiagonals: T(n,k) is the number of chiral pairs of color patterns (set partitions) in a cycle of length n using k or fewer colors (subsets).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 6, 13, 2, 0, 0, 0, 0, 0, 0, 6, 30, 46, 7, 0, 0, 0, 0, 0, 0, 6, 34, 130, 144, 12, 0, 0, 0, 0, 0, 0, 6, 34, 181, 532, 420, 31, 0, 0, 0, 0, 0, 0, 6, 34, 190, 871, 2006, 1221, 58, 0, 0, 0, 0, 0, 0, 6, 34, 190, 996, 4016, 7626, 3474, 126, 0, 0, 0, 0, 0, 0, 6, 34, 190, 1011, 5070, 18526, 28401, 9856, 234, 0
Offset: 1

Views

Author

Robert A. Russell, Oct 21 2018

Keywords

Comments

Two color patterns are equivalent if the colors are permuted.
Adnk[d,n,k] in Mathematica program is coefficient of x^k in A(d,n)(x) in Gilbert and Riordan reference.

Examples

			Array begins with T(1,1):
0  0    0     0     0      0      0      0      0      0      0      0 ...
0  0    0     0     0      0      0      0      0      0      0      0 ...
0  0    0     0     0      0      0      0      0      0      0      0 ...
0  0    0     0     0      0      0      0      0      0      0      0 ...
0  0    0     0     0      0      0      0      0      0      0      0 ...
0  0    4     6     6      6      6      6      6      6      6      6 ...
0  1   13    30    34     34     34     34     34     34     34     34 ...
0  2   46   130   181    190    190    190    190    190    190    190 ...
0  7  144   532   871    996   1011   1011   1011   1011   1011   1011 ...
0 12  420  2006  4016   5070   5328   5352   5352   5352   5352   5352 ...
0 31 1221  7626 18526  26454  29215  29705  29740  29740  29740  29740 ...
0 58 3474 28401 85101 139484 165164 171556 172415 172466 172466 172466 ...
For T(6,4)=6, the chiral pairs are AAABBC-AAABCC, AABABC-AABCAC, AABACB-AABCAB, AABACC-AABBAC, AABACD-AABCAD and AABCBD-AABCDC.
		

Crossrefs

Partial row sums of A320647.
For increasing k, columns converge to A320749.
Cf. A320747 (oriented), A320748 (unoriented), A305749 (achiral).

Programs

  • Mathematica
    Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d, Adnk[d,n-1,k-#]&], Boole[n == 0 && k == 0]]
    Ach[n_,k_] := Ach[n,k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    Table[Sum[(DivisorSum[n, EulerPhi[#] Adnk[#,n/#,j]&]/n - Ach[n,j])/2, {j,k-n+1}], {k,15}, {n,k}] // Flatten
  • PARI
    \\ Ach is A304972 and R is A152175 as square matrices.
    Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
    R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
    T(n)={my(M=(R(n) - Ach(n))/2); for(i=2, n, M[,i] += M[,i-1]); M}
    { my(A=T(12)); for(n=1, #A, print(A[n, ])) } \\ Andrew Howroyd, Nov 03 2019

Formula

T(n,k) = Sum_{j=1..k} -Ach(n,j)/2 + (1/2n)*Sum_{d|n} phi(d)*A(d,n/d,j), where Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k)+Ach(n-2,k-1)+Ach(n-2,k-2)) and A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)).
T(n,k) = (A320747(n,k) - A305749(n,k)) / 2 = A320747(n,k) - A320748(n,k)= A320748(n,k) - A305749(n,k).

A320743 Number of chiral pairs of color patterns (set partitions) in a cycle of length n using 3 or fewer colors (subsets).

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 13, 46, 144, 420, 1221, 3474, 9856, 27794, 78632, 222156, 629760, 1787440, 5087797, 14509580, 41479867, 118811286, 341009901, 980488510, 2824029648, 8146494860, 23534997912, 68084154502, 197211336576, 571915188840, 1660405181149, 4825559508106, 14038010213051, 40875403561680, 119122661856133, 347441159864556, 1014152747485696
Offset: 1

Views

Author

Robert A. Russell, Oct 21 2018

Keywords

Comments

Two color patterns are equivalent if the colors are permuted.
Adnk[d,n,k] in Mathematica program is coefficient of x^k in A(d,n)(x) in Gilbert and Riordan reference.
There are nonrecursive formulas, generating functions, and computer programs for A002076 and A182522, which can be used in conjunction with the first formula.

Examples

			For a(6)=4, the chiral pairs are AAABBC-AAABCC, AABABC-AABCAC, AABACB-AABCAB, and AABACC-AABBAC.
		

Crossrefs

Column 3 of A320742.
Cf. A002076 (oriented), A056353 (unoriented), A182522 (achiral).

Programs

  • Mathematica
    Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d, Adnk[d,n-1,k-#]&], Boole[n == 0 && k == 0]]
    Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    k=3; Table[Sum[(DivisorSum[n,EulerPhi[#] Adnk[#,n/#,j]&]/n - Ach[n,j])/2, {j, k}], {n,40}]

Formula

a(n) = (A002076(n) - A182522(n)) / 2 = A002076(n) - A056353(n) = A056353(n) - A182522(n).
a(n) = Sum_{j=1..k} -Ach(n,j)/2 + (1/2n)*Sum_{d|n} phi(d)*A(d,n/d,j), where k=3 is the maximum number of colors, Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)), and A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)).
a(n) = A059053(n) + A320643(n).

A320744 Number of chiral pairs of color patterns (set partitions) in a cycle of length n using 4 or fewer colors (subsets).

Original entry on oeis.org

0, 0, 0, 0, 0, 6, 30, 130, 532, 2006, 7626, 28401, 106260, 396435, 1486147, 5580130, 21032880, 79486763, 301317282, 1145123672, 4362804633, 16658456825, 63738451998, 244332656201, 938244497740, 3608640426930, 13899977105315, 53614228550220, 207061964668740, 800639722002163, 3099251007215286, 12009598156277090, 46582685655751645, 180850428684482360
Offset: 1

Views

Author

Robert A. Russell, Oct 21 2018

Keywords

Comments

Two color patterns are equivalent if the colors are permuted.
Adnk[d,n,k] in Mathematica program is coefficient of x^k in A(d,n)(x) in Gilbert and Riordan reference.
There are nonrecursive formulas, generating functions, and computer programs for A056292 and A305750, which can be used in conjunction with the first formula.

Examples

			For a(6)=6, the chiral pairs are AAABBC-AAABCC, AABABC-AABCAC, AABACB-AABCAB, AABACC-AABBAC, AABACD-AABCAD, and AABCBD-AABCDC.
		

Crossrefs

Column 4 of A320742.
Cf. A056292 (oriented), A056354 (unoriented), A305750 (achiral).

Programs

  • Mathematica
    Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d, Adnk[d,n-1,k-#]&], Boole[n == 0 && k == 0]]
    Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    k=4; Table[Sum[(DivisorSum[n,EulerPhi[#] Adnk[#,n/#,j]&]/n - Ach[n,j])/2, {j, k}], {n,40}]

Formula

a(n) = (A056292(n) - A305750(n)) / 2 = A056292(n) - A056354(n) = A056354(n) - A305750(n).
a(n) = Sum_{j=1..k} -Ach(n,j)/2 + (1/2n)*Sum_{d|n} phi(d)*A(d,n/d,j), where k=4 is the maximum number of colors, Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)), and A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)).
a(n) = A059053(n) + A320643(n) + A320644(n).

A320745 Number of chiral pairs of color patterns (set partitions) in a cycle of length n using 5 or fewer colors (subsets).

Original entry on oeis.org

0, 0, 0, 0, 0, 6, 34, 181, 871, 4016, 18526, 85101, 393148, 1822977, 8500893, 39809180, 187230704, 883730048, 4184926222, 19874478310, 94629276256, 451604739323, 2159748985582, 10348493650194, 49671898709098, 238804606717950, 1149792470325340, 5543620159707666, 26762240285558924, 129350640352555296, 625889650880647630, 3031651402693863747, 14698911258326292182, 71332938143655936584, 346474231506471943759
Offset: 1

Views

Author

Robert A. Russell, Oct 21 2018

Keywords

Comments

Two color patterns are equivalent if the colors are permuted.
Adnk[d,n,k] in Mathematica program is coefficient of x^k in A(d,n)(x) in Gilbert and Riordan reference.
There are nonrecursive formulas, generating functions, and computer programs for A056293 and A305751, which can be used in conjunction with the first formula.

Examples

			For a(6)=6, the chiral pairs are AAABBC-AAABCC, AABABC-AABCAC, AABACB-AABCAB, AABACC-AABBAC, AABACD-AABCAD, and AABCBD-AABCDC.
		

Crossrefs

Column 5 of A320742.
Cf. A056293 (oriented), A056355 (unoriented), A305751 (achiral).

Programs

  • Mathematica
    Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d, Adnk[d,n-1,k-#]&], Boole[n == 0 && k == 0]]
    Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    k=5; Table[Sum[(DivisorSum[n,EulerPhi[#] Adnk[#,n/#,j]&]/n - Ach[n,j])/2, {j, k}], {n,40}]

Formula

a(n) = (A056293(n) - A305751(n)) / 2 = A056293(n) - A056355(n) = A056355(n) - A305751(n).
a(n) = Sum_{j=1..k} -Ach(n,j)/2 + (1/2n)*Sum_{d|n} phi(d)*A(d,n/d,j), where k=5 is the maximum number of colors, Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)), and A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)).
a(n) = A059053(n) + A320643(n) + A320644(n) + A320645(n).

A320746 Number of chiral pairs of color patterns (set partitions) in a cycle of length n using 6 or fewer colors (subsets).

Original entry on oeis.org

0, 0, 0, 0, 0, 6, 34, 190, 996, 5070, 26454, 139484, 749742, 4082481, 22509626, 125231540, 702004040, 3958071545, 22423227634, 127524417922, 727617119592, 4163076477731, 23876455868772, 137228326265794, 790200053665362, 4557942281943078, 26331297198477874, 152331940294133402, 882422871962784662, 5117852332008063806, 29715786649820358328, 172720006045619486686, 1004904748993330281274, 5852047136464153694312
Offset: 1

Views

Author

Robert A. Russell, Oct 21 2018

Keywords

Comments

Two color patterns are equivalent if the colors are permuted.
Adnk[d,n,k] in Mathematica program is coefficient of x^k in A(d,n)(x) in Gilbert and Riordan reference.
There are nonrecursive formulas, generating functions, and computer programs for A056294 and A305752, which can be used in conjunction with the first formula.

Examples

			For a(6)=6, the chiral pairs are AAABBC-AAABCC, AABABC-AABCAC, AABACB-AABCAB, AABACC-AABBAC, AABACD-AABCAD, and AABCBD-AABCDC.
		

Crossrefs

Column 6 of A320742.
Cf. A056294 (oriented), A056356 (unoriented), A305752 (achiral).

Programs

  • Mathematica
    Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d, Adnk[d,n-1,k-#]&], Boole[n == 0 && k == 0]]
    Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    k=6; Table[Sum[(DivisorSum[n,EulerPhi[#] Adnk[#,n/#,j]&]/n - Ach[n,j])/2, {j, k}], {n,40}]

Formula

a(n) = (A056294(n) - A305752(n)) / 2 = A056294(n) - A056356(n) = A056356(n) - A305752(n).
a(n) = Sum_{j=1..k} -Ach(n,j)/2 + (1/2n)*Sum_{d|n} phi(d)*A(d,n/d,j), where k=6 is the maximum number of colors, Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)), and A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)).
a(n) = A059053(n) + A320643(n) + A320644(n) + A320645(n) + A320646(n).

A308706 Number of chiral pairs of set partitions of a primitive cycle of n elements having exactly two different elements.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 7, 12, 31, 58, 126, 233, 484, 904, 1800, 3395, 6643, 12612, 24457, 46655, 90157, 172750, 333498, 641214, 1238664, 2388618, 4620006, 8931536, 17302033, 33521792, 65042495, 126257160, 245361171, 477087772, 928510506, 1808145395, 3523813566
Offset: 0

Views

Author

Robert A. Russell, Jun 18 2019

Keywords

Examples

			For a(7)=1, the chiral pair is 0001011-0001101.  For a(8)=2, the chiral pairs are 00001011-00001101 and 00010011-00011001.
		

Crossrefs

Cf. A000048 (oriented), A000046 (unoriented), A179781 (achiral), A059053 (not primitive).

Programs

  • Mathematica
    Join[{0}, Table[(DivisorSum[NestWhile[#/2 &, n, EvenQ], MoebiusMu[#] 2^(n/#) &]/(2 n) - DivisorSum[n, MoebiusMu[n/#] 2^Floor[#/2] &])/2, {n, 1, 40}]]
  • PARI
    a(n) = if (n, (sumdiv(n, d, if (d%2, moebius(d)*2^(n/d)))/(2*n) - sumdiv(n, d, moebius(n/d)*2^(d\2)))/2, 0); \\ Michel Marcus, Jun 27 2019; corrected Jun 12 2022

Formula

a(n) = ((1/(2n)) * Sum_{odd d|n} mu(d)*2^(n/d) - Sum_{d|n} mu(n/d)*2^floor(d/2)) / 2, where mu is the Möbius function at A008683.
a(n) = A000048(n) - A000046(n) = (A000048(n) - A179781(n))/2 = A000046(n) - A179781(n).
A059053(n) = Sum_{d|n} a(d).

A059078 Number of orientable necklaces with 2n beads and two colors which when turned over produce their own color complement.

Original entry on oeis.org

0, 0, 0, 1, 2, 6, 12, 27, 54, 113, 228, 465, 934, 1890, 3798, 7644, 15350, 30840, 61878, 124173, 249008, 499318, 1000866, 2005971, 4019446, 8053062, 16131780, 32311665, 64711820, 129589530, 259487040, 519552495, 1040186358, 2082408354
Offset: 0

Views

Author

Henry Bottomley, Dec 22 2000

Keywords

Comments

Clearly in each necklace the number of beads of each of the two colors must be equal and so the number of beads must be even, if a(n) is to be positive.

Programs

  • Mathematica
    a13[n_] := DivisorSum[n, EulerPhi@(2*#)*2^(n/#)&]/(2*n);
    a29[n_] := (1/4)*(Mod[n, 2] + 3)*2^Quotient[n, 2] + DivisorSum[n, EulerPhi[#]*2^(n/#)&]/(2*n);
    a[0] = 0; a[n_] := a29[2*n] - a13[2*n] - 2^(n - 1);
    Array[a, 34, 0] (* Jean-François Alcover, Nov 05 2017 *)

Formula

a(n) = A059076(2*n) - 2*A059053(2*n).
a(n) = A000029(2*n) - A000013(2*n) - A000079(n-1).

Extensions

More terms from Vladeta Jovovic, Mar 06 2001
Showing 1-10 of 10 results.