cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A320742 Array read by antidiagonals: T(n,k) is the number of chiral pairs of color patterns (set partitions) in a cycle of length n using k or fewer colors (subsets).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 6, 13, 2, 0, 0, 0, 0, 0, 0, 6, 30, 46, 7, 0, 0, 0, 0, 0, 0, 6, 34, 130, 144, 12, 0, 0, 0, 0, 0, 0, 6, 34, 181, 532, 420, 31, 0, 0, 0, 0, 0, 0, 6, 34, 190, 871, 2006, 1221, 58, 0, 0, 0, 0, 0, 0, 6, 34, 190, 996, 4016, 7626, 3474, 126, 0, 0, 0, 0, 0, 0, 6, 34, 190, 1011, 5070, 18526, 28401, 9856, 234, 0
Offset: 1

Views

Author

Robert A. Russell, Oct 21 2018

Keywords

Comments

Two color patterns are equivalent if the colors are permuted.
Adnk[d,n,k] in Mathematica program is coefficient of x^k in A(d,n)(x) in Gilbert and Riordan reference.

Examples

			Array begins with T(1,1):
0  0    0     0     0      0      0      0      0      0      0      0 ...
0  0    0     0     0      0      0      0      0      0      0      0 ...
0  0    0     0     0      0      0      0      0      0      0      0 ...
0  0    0     0     0      0      0      0      0      0      0      0 ...
0  0    0     0     0      0      0      0      0      0      0      0 ...
0  0    4     6     6      6      6      6      6      6      6      6 ...
0  1   13    30    34     34     34     34     34     34     34     34 ...
0  2   46   130   181    190    190    190    190    190    190    190 ...
0  7  144   532   871    996   1011   1011   1011   1011   1011   1011 ...
0 12  420  2006  4016   5070   5328   5352   5352   5352   5352   5352 ...
0 31 1221  7626 18526  26454  29215  29705  29740  29740  29740  29740 ...
0 58 3474 28401 85101 139484 165164 171556 172415 172466 172466 172466 ...
For T(6,4)=6, the chiral pairs are AAABBC-AAABCC, AABABC-AABCAC, AABACB-AABCAB, AABACC-AABBAC, AABACD-AABCAD and AABCBD-AABCDC.
		

Crossrefs

Partial row sums of A320647.
For increasing k, columns converge to A320749.
Cf. A320747 (oriented), A320748 (unoriented), A305749 (achiral).

Programs

  • Mathematica
    Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d, Adnk[d,n-1,k-#]&], Boole[n == 0 && k == 0]]
    Ach[n_,k_] := Ach[n,k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    Table[Sum[(DivisorSum[n, EulerPhi[#] Adnk[#,n/#,j]&]/n - Ach[n,j])/2, {j,k-n+1}], {k,15}, {n,k}] // Flatten
  • PARI
    \\ Ach is A304972 and R is A152175 as square matrices.
    Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
    R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
    T(n)={my(M=(R(n) - Ach(n))/2); for(i=2, n, M[,i] += M[,i-1]); M}
    { my(A=T(12)); for(n=1, #A, print(A[n, ])) } \\ Andrew Howroyd, Nov 03 2019

Formula

T(n,k) = Sum_{j=1..k} -Ach(n,j)/2 + (1/2n)*Sum_{d|n} phi(d)*A(d,n/d,j), where Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k)+Ach(n-2,k-1)+Ach(n-2,k-2)) and A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)).
T(n,k) = (A320747(n,k) - A305749(n,k)) / 2 = A320747(n,k) - A320748(n,k)= A320748(n,k) - A305749(n,k).

A305752 Number of achiral color patterns (set partitions) in a row or cycle of length n with 6 or fewer colors (subsets).

Original entry on oeis.org

1, 1, 2, 3, 7, 12, 31, 58, 159, 312, 883, 1774, 5103, 10368, 30067, 61414, 178815, 366168, 1068259, 2190190, 6395919, 13120944, 38335123, 78665590, 229890591, 471814344, 1378985155, 2830350526, 8272839855, 16980500640, 49633834099, 101878204486
Offset: 0

Views

Author

Robert A. Russell, Jun 09 2018

Keywords

Comments

An equivalent color pattern is obtained when we permute the colors. Thus all permutations of ABCDE are equivalent, as are AABCDEF and BBCDEFA. A color pattern is achiral if it is equivalent to its reversal. Rotations of the colors of a cycle are equivalent, so for cycles AABCCDEF = BCCDEFAA = CCDEFAAB.

Examples

			For a(5) = 12, the achiral patterns for both rows and cycles are AAAAA, AABAA, ABABA, ABBBA, AABCC, ABACA, ABBBC, ABCAB, ABCBA, ABCBD, ABCDA, and ABCDE.
		

Crossrefs

Sixth column of A305749.
Cf. A056273 (oriented), A056325 (unoriented), A320936 (chiral), for rows.
Cf. A056294 (oriented), A056356 (unoriented), A320746 (chiral), for cycles.

Programs

  • Maple
    seq(coeff(series((1-10*x^2+x^3+29*x^4-6*x^5-25*x^6+8*x^7)/((1-x)*(1-2*x^2)*(1-3*x^2)*(1-6*x^2)),x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 30 2018
  • Mathematica
    Table[If[EvenQ[n], StirlingS2[(n+12)/2, 6] - 19 StirlingS2[(n+10)/2, 6] + 140 StirlingS2[(n+8)/2, 6] - 501 StirlingS2[(n+6)/2, 6] + 887 StirlingS2[(n+4)/2, 6] - 692 StirlingS2[(n+2)/2, 6] + 160 StirlingS2[n/2, 6], StirlingS2[(n+11)/2, 6] - 18 StirlingS2[(n+9)/2, 6] + 124 StirlingS2[(n+7)/2, 6] - 404 StirlingS2[(n+5)/2, 6] + 613 StirlingS2[(n+3)/2, 6] - 340 StirlingS2[(n+1)/2, 6]], {n, 0, 40}]
    Ach[n_, k_] := Ach[n,k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]]; (* A304972 *)
    k=6; Table[Sum[Ach[n, j], {j, 0, k}], {n, 0, 40}]
    CoefficientList[Series[(1-10x^2+x^3+29x^4-6x^5-25x^6+8x^7) / ((1-x)(1-2x^2)(1-3x^2)(1-6 x^2)), {x, 0, 40}], x]
    LinearRecurrence[{1,11,-11,-36,36,36,-36},{1,1,2,3,7,12,31,58},40]
    Join[{1}, Table[If[EvenQ[n], (36 + 45 2^(n/2) + 40 3^(n/2) + 19 6^(n/2)) / 180, (72 + 45 2^((n+1)/2) + 40 3^((n+1)/2) + 13 6^((n+1)/2)) / 360], {n,40}]]

Formula

a(n) = Sum_{j=0..6} Ach(n,j), where Ach(n,k) = [n>1] * (k*T(n-2,k) + T(n-2,k-1) + T(n-2,k-2)) + [0<=n<2 & n==k].
G.f.: (1-10x^2+x^3+29x^4-6x^5-25x^6+8x^7) / ((1-x)*(1-2x^2)*(1-3x^2)*(1-6x^2)).
a(2m) = S2(m+6,6) - 19*S2(m+5,6) + 140*S2(m+4,6) - 501*S2(m+3,6) + 887*S2(m+2,6) - 692*S2(m+1,6) + 160*S2(m,6);
a(2m-1) = S2(m+5,6) - 18*S2(m+4,6) + 124*S2(m+3,6) - 404*S2(m+2,6) + 613*S2(m+1,6) - 340*S2(m,6), where S2(n,k) is the Stirling subset number A008277.
For n>0, a(2m) = (36 + 45*2^m + 40*3^m + 19*6^m) / 180.
a(2m-1) = (72 + 45*2^m + 40*3^m + 13*6^m) / 360.
a(n) = 2*A056325(n) - A056273(n) = A056273(n) - 2*A320936(n) = A056325(n) - A320936(n).
a(n) = 2*A056356(n) - A056294(n) = A056294(n) - 2*A320746(n) = A056356(n) - A320936(n).
a(n) = A057427(n) + A052551(n-2) + A304973(n) + A304974(n) + A304975(n) + A304976(n).
a(n) = a(n-1) + 11*a(n-2) - 11*a(n-3) - 36*a(n-4) + 36*a(n-5) + 36*a(n-6) - 36*a(n-7). - Muniru A Asiru, Oct 30 2018
Showing 1-2 of 2 results.