A056296 Number of n-bead necklace structures using exactly three different colored beads.
0, 0, 1, 2, 5, 18, 43, 126, 339, 946, 2591, 7254, 20125, 56450, 158355, 446618, 1262225, 3580686, 10181479, 29032254, 82968843, 237645250, 682014587, 1960981598, 5647919645, 16292761730, 47069104613, 136166703562, 394418199725, 1143822046786, 3320790074371
Offset: 1
Keywords
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
Programs
-
Mathematica
Adn[d_, n_] := Adn[d, n] = If[1==n, DivisorSum[d, x^# &], Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n-1], x] x]]; Table[Coefficient[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/n , x, 3], {n, 1, 40}] (* Robert A. Russell, Feb 23 2018 *) Table[(1/n) DivisorSum[n, EulerPhi[#] Which[Divisible[#,6], StirlingS2[n/#+2,3] - StirlingS2[n/#+1,3], Divisible[#,3], StirlingS2[n/#+2,3] - 3 StirlingS2[n/#+1,3] + 3 StirlingS2[n/#,3], Divisible[#,2], 2 StirlingS2[n/#+1,3] - 2 StirlingS2[n/#,3], True, StirlingS2[n/#,3]] &],{n, 1, 40}] (* Robert A. Russell, May 29 2018*) mx = 40; Drop[CoefficientList[Series[-Sum[(EulerPhi[d] / d) Which[ Divisible[d, 6], Log[1 - 3x^d] - Log[1 - 2x^d], Divisible[d, 3] , (Log[1 - 3x^d] - Log[1 - 2x^d] + Log[1 - x^d]) / 2, Divisible[d, 2], (2 Log[1 - 3x^d] - 3 Log[1 - 2x^d]) / 3, True, (Log[1 - 3x^d] - 3Log[1 - 2x^d] + 3 Log[1 - x^d]) / 6], {d, 1, mx}], {x, 0, mx}], x], 1] (* Robert A. Russell, May 29 2018 *)
Formula
From Robert A. Russell, May 29 2018: (Start)
a(n) = (1/n) * Sum_{d|n} phi(d) * ([d==0 mod 6] * (S2(n/d + 2, 3) - S2(n/d + 1, 3)) + [d==3 mod 6] * (S2(n/d + 2, 3) - 3*S2(n/d + 1, 3) + 3*S2(n/d, 3)) + [d==2 mod 6 | d==4 mod 6] * (2*S2(n/d + 1, 3) - 2*S2(n/d, 3)) + [d==1 mod 6 | d=5 mod 6] * S2(n/d, 3)), where S2(n,k) is the Stirling subset number, A008277.
G.f.: -Sum_{d>0} (phi(d) / d) * ([d==0 mod 6] * (log(1-3x^d) - log(1-x^d)) + [d==3 mod 6] * (log(1-3x^d) - log(1-2x^d) + log(1-x^d)) / 2 + [d==2 mod 6 | d==4 mod 6] * (2*log(1-3x^d) - 3*log(1-2x^d)) / 3 + [d==1 mod 6 | d=5 mod 6] * (log(1-3x^d) - 3*log(1-2x^d) + 3*log(1-x^d)) / 6).
(End)
Comments