A152175
Triangle read by rows: T(n,k) is the number of k-block partitions of an n-set up to rotations.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 5, 2, 1, 1, 7, 18, 13, 3, 1, 1, 9, 43, 50, 20, 3, 1, 1, 19, 126, 221, 136, 36, 4, 1, 1, 29, 339, 866, 773, 296, 52, 4, 1, 1, 55, 946, 3437, 4281, 2303, 596, 78, 5, 1, 1, 93, 2591, 13250, 22430, 16317, 5817, 1080, 105, 5, 1, 1, 179, 7254, 51075, 115100, 110462, 52376, 13299, 1873, 147, 6, 1
Offset: 1
Triangle begins with T(1,1):
1;
1, 1;
1, 1, 1;
1, 3, 2, 1;
1, 3, 5, 2, 1;
1, 7, 18, 13, 3, 1;
1, 9, 43, 50, 20, 3, 1;
1, 19, 126, 221, 136, 36, 4, 1;
1, 29, 339, 866, 773, 296, 52, 4, 1;
1, 55, 946, 3437, 4281, 2303, 596, 78, 5, 1;
1, 93, 2591, 13250, 22430, 16317, 5817, 1080, 105 , 5, 1;
1, 179, 7254, 51075, 115100, 110462, 52376, 13299, 1873, 147, 6, 1;
1, 315, 20125, 194810, 577577, 717024, 439648, 146124, 27654, 3025, 187, 6, 1;
...
For T(4,2)=3, the set partitions are AAAB, AABB, and ABAB.
For T(4,3)=2, the set partitions are AABC and ABAC.
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
A(1,n,k) in formula is the Stirling subset number
A008277.
-
(* Using recursion formula from Gilbert and Riordan:*)
Adn[d_, n_] := Adn[d, n] = Which[0==n, 1, 1==n, DivisorSum[d, x^# &],
1==d, Sum[StirlingS2[n, k] x^k, {k, 0, n}],
True, Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n - 1], x] x]];
Table[CoefficientList[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/(x n), x],
{n, 1, 10}] // Flatten (* Robert A. Russell, Feb 23 2018 *)
Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d,Adnk[d,n-1,k-#] &], Boole[n==0 && k==0]]
Table[DivisorSum[n,EulerPhi[#]Adnk[#,n/#,k]&]/n,{n,1,12},{k,1,n}] // Flatten (* Robert A. Russell, Oct 16 2018 *)
-
\\ see A056391 for Polya enumeration functions
T(n,k) = NonequivalentStructsExactly(CyclicPerms(n), k); \\ Andrew Howroyd, Oct 14 2017
-
R(n) = {Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
{ my(A=R(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019
A294792
Triangle read by rows, 1 <= k <= n: T(n,k) = non-isomorphic colorings of a toroidal n X k grid using exactly three colors under translational symmetry and swappable colors.
Original entry on oeis.org
0, 0, 3, 1, 18, 345, 2, 136, 7254, 447156, 5, 946, 158355, 29032254, 5647919665, 18, 7324, 3580802, 1961010826, 1143822046786, 694881637942816, 43, 56450, 82968843, 136166703562, 238244961999013, 434202285631866206, 813943290958393433377, 126, 447138, 1960981598, 9651082393912, 50656925726930746, 276966813318877426118, 1557582240509759704455566
Offset: 1
- F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.
A320643
Number of chiral pairs of color patterns (set partitions) in a cycle of length n using exactly 3 colors (subsets).
Original entry on oeis.org
0, 0, 0, 0, 0, 4, 12, 44, 137, 408, 1190, 3416, 9730, 27560, 78148, 221250, 627960, 1784038, 5081154, 14496956, 41455409, 118764600, 340919744, 980315700, 2823696150, 8145853520, 23533759241, 68081765650, 197206716570, 571906256808, 1660387879116, 4825525985408, 14037945170525, 40875277302720, 119122416494961, 347440682773324, 1014151818975190, 2962391932326680, 8659301777595196, 25328461701728194
Offset: 1
For a(6)=4, the chiral pairs are AAABBC-AAABCC, AABABC-AABCAC, AABACB-AABCAB, and AABACC-AABBAC.
-
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d,Adnk[d,n-1,k-#] &], Boole[n==0 && k==0]]
k=3; Table[DivisorSum[n,EulerPhi[#]Adnk[#,n/#,k]&]/(2n) - Ach[n,k]/2,{n,40}]
A056304
Number of primitive (period n) n-bead necklace structures using exactly three different colored beads.
Original entry on oeis.org
0, 0, 1, 2, 5, 17, 43, 124, 338, 941, 2591, 7234, 20125, 56407, 158349, 446492, 1262225, 3580330, 10181479, 29031306, 82968799, 237642659, 682014587, 1960974220, 5647919640, 16292741605, 47069104274, 136166647110, 394418199725, 1143821887473, 3320790074371
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
A056358
Number of bracelet structures using exactly three different colored beads.
Original entry on oeis.org
0, 0, 1, 2, 5, 14, 31, 82, 202, 538, 1401, 3838, 10395, 28890, 80207, 225368, 634265, 1796648, 5100325, 14535298, 41513434, 118880650, 341094843, 980665898, 2824223495, 8146908210, 23535345372, 68084937912, 197211483155, 571915789978, 1660402195255, 4825554617686
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
A327397
Number of n-bead necklace structures with beads of exactly three colors and no adjacent beads having the same color.
Original entry on oeis.org
0, 0, 1, 1, 1, 3, 3, 7, 11, 19, 31, 63, 105, 201, 367, 695, 1285, 2451, 4599, 8775, 16651, 31837, 60787, 116639, 223697, 430395, 828525, 1598227, 3085465, 5965999, 11545611, 22370999, 43383571, 84217615, 163617805, 318150719, 619094385, 1205614053, 2349384031
Offset: 1
Necklace structures for n=3..8 are:
a(3) = 1: ABC;
a(4) = 1: ABAC;
a(5) = 1: ABABC;
a(6) = 3: ABABAC, ABACBC, ABCABC;
a(7) = 3: ABABABC, ABABCAC, ABACABC;
a(8) = 7: ABABABAC, ABABACAC, ABABACBC, ABABCABC, ABABCBAC, ABACABAC, ABACBABC.
A328740
Number of n-bead necklace structures which are not self-equivalent under a nonzero rotation using exactly three different colored beads.
Original entry on oeis.org
0, 0, 0, 1, 5, 13, 43, 116, 335, 920, 2591, 7173, 20125, 56260, 158333, 446098, 1262225, 3579227, 10181479, 29028405, 82968695, 237634700, 682014587, 1960951980, 5647919640, 16292680600, 47069103545, 136166476875, 394418199725, 1143821408316, 3320790074371
Offset: 1
For n=5, the 5 necklace structures are: aaabc, aabac, aabbc, aabcb, ababc.
Showing 1-7 of 7 results.
Comments