A056297 Number of n-bead necklace structures using exactly four different colored beads.
0, 0, 0, 1, 2, 13, 50, 221, 866, 3437, 13250, 51075, 194810, 742651, 2823766, 10738881, 40843370, 155494751, 592614050, 2261625725, 8643289534, 33080920607, 126797503250, 486710971595, 1870851589554, 7201014763285, 27752927359726, 107092397450897
Offset: 1
Keywords
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
Programs
-
Mathematica
From Robert A. Russell, May 29 2018: (Start) Adn[d_, n_] := Adn[d, n] = If[1==n, DivisorSum[d, x^# &], Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n-1], x] x]]; Table[Coefficient[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/n , x, 4], {n, 1, 40}] (* after Gilbert and Riordan *) Table[(1/n) DivisorSum[n, EulerPhi[#] Which[ Divisible[#,12], StirlingS2[n/#+3,4] - 3 StirlingS2[n/#+2,4] + 2 StirlingS2[n/#+1,4], Divisible[#,6], 3 StirlingS2[n/#+2,4] - 9 StirlingS2[n/#+1,4] + 6 StirlingS2[n/#,4], Divisible[#,4], StirlingS2[n/#+3,4] - 5 StirlingS2[n/#+2,4] + 10 StirlingS2[n/#+1,4] - 8 StirlingS2[n/#,4], Divisible[#,3], 2 StirlingS2[n/#+2,4] - 8 StirlingS2[n/#+1,4] + 9 StirlingS2[n/#,4], Divisible[#,2], StirlingS2[n/#+2,4] - StirlingS2[n/#+1,4] - 2 StirlingS2[n/#,4], True, StirlingS2[n/#,4]] &],{n, 1, 40}] mx = 40; Drop[CoefficientList[Series[-Sum[(EulerPhi[d] / d) Which[ Divisible[d, 12], Log[1-4x^d] - Log[1-3x^d], Divisible[d, 6], (3 Log[1-4x^d] - 4 Log[1-3x^d]) / 4, Divisible[d, 4], (2 Log[1-4x^d] - 2 Log[1-3x^d] + Log[1-x^d]) / 3, Divisible[d, 3], (3 Log[1-4x^d] - 4 Log[1-3x^d] + 2 Log[1-2x^d] - 4 Log[1-x^d]) / 8, Divisible[d, 2], (5 Log[1-4x^d] - 8 Log[1-3x^d] + 4 Log[1-x^d]) / 12, True, (Log[1-4x^d] - 4 Log[1-3x^d] + 6 Log[1-2x^d] - 4 Log[1-x^d]) / 24], {d, 1, mx}], {x, 0, mx}], x], 1] (End)
Formula
From Robert A. Russell, May 29 2018: (Start)
a(n) = (1/n) * Sum_{d|n} phi(d) * ([d==0 mod 12] * (S2(n/d + 3, 4) - 3*S2(n/d+2,4) + 2*S2(n/d + 1, 4)) + [d==6 mod 12] * (3*S2(n/d + 2, 4) - 9*S2(n/d + 1, 4) + 3*S2(n/d, 4)) + [d==4 mod 12 | d==8 mod 12] * (S2(n/d + 3, 4) - 5*S2(n/d + 2, 4) - 10*S2(n/d + 1, 4) - 8*S2(n/d, 4)) + [d==3 mod 12 | d=9 mod 12] * (2*S2(n/d + 2, 4) - 8*S2(n/d + 1, 4) - 2*S2(n/d,4)) + [d==2 mod 12 | d==10 mod 12] * (S2(n/d + 2, 4) - S2(n/d + 1, 4) + 9*S2(n/d, 4)) + [d mod 12 in {1,5,7,11}] * S2(n/d, 4)), where S2(n,k) is the Stirling subset number, A008277.
G.f.: -Sum_{d>0} (phi(d) / d) * ([d==0 mod 12] * (log(1-4x^d) - log(1-3x^d)) +[d==6 mod 12] * (3*log(1-4x^d) - 4*log(1-3x^d)) / 4 + [d==4 mod 12 | d==8 mod 12] * (2*log(1-4x^d) - 2*log(1-3x^d) + log(1-x^d)) / 3 + [d==3 mod 12 | d==9 mod 12] * (3*log(1-4x^d) - 4*log(1-3x^d) + 2*log(1-2x^d) - 4*log(1-x^d)) / 8 + [d==2 mod 12 | d=10 mod 12] * (5*log(1-4x^d) - 8*log(1-3x^d) + 4*log(1-x^d)) / 12 + [d mod 12 in {1,5,7,11}] * (log(1-4x^d) - 4*log(1-3x^d) + 6*log(1-2x^d) - 4*log(1-x^d)) / 24).
(End)
Comments