A152175
Triangle read by rows: T(n,k) is the number of k-block partitions of an n-set up to rotations.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 5, 2, 1, 1, 7, 18, 13, 3, 1, 1, 9, 43, 50, 20, 3, 1, 1, 19, 126, 221, 136, 36, 4, 1, 1, 29, 339, 866, 773, 296, 52, 4, 1, 1, 55, 946, 3437, 4281, 2303, 596, 78, 5, 1, 1, 93, 2591, 13250, 22430, 16317, 5817, 1080, 105, 5, 1, 1, 179, 7254, 51075, 115100, 110462, 52376, 13299, 1873, 147, 6, 1
Offset: 1
Triangle begins with T(1,1):
1;
1, 1;
1, 1, 1;
1, 3, 2, 1;
1, 3, 5, 2, 1;
1, 7, 18, 13, 3, 1;
1, 9, 43, 50, 20, 3, 1;
1, 19, 126, 221, 136, 36, 4, 1;
1, 29, 339, 866, 773, 296, 52, 4, 1;
1, 55, 946, 3437, 4281, 2303, 596, 78, 5, 1;
1, 93, 2591, 13250, 22430, 16317, 5817, 1080, 105 , 5, 1;
1, 179, 7254, 51075, 115100, 110462, 52376, 13299, 1873, 147, 6, 1;
1, 315, 20125, 194810, 577577, 717024, 439648, 146124, 27654, 3025, 187, 6, 1;
...
For T(4,2)=3, the set partitions are AAAB, AABB, and ABAB.
For T(4,3)=2, the set partitions are AABC and ABAC.
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
A(1,n,k) in formula is the Stirling subset number
A008277.
-
(* Using recursion formula from Gilbert and Riordan:*)
Adn[d_, n_] := Adn[d, n] = Which[0==n, 1, 1==n, DivisorSum[d, x^# &],
1==d, Sum[StirlingS2[n, k] x^k, {k, 0, n}],
True, Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n - 1], x] x]];
Table[CoefficientList[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/(x n), x],
{n, 1, 10}] // Flatten (* Robert A. Russell, Feb 23 2018 *)
Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d,Adnk[d,n-1,k-#] &], Boole[n==0 && k==0]]
Table[DivisorSum[n,EulerPhi[#]Adnk[#,n/#,k]&]/n,{n,1,12},{k,1,n}] // Flatten (* Robert A. Russell, Oct 16 2018 *)
-
\\ see A056391 for Polya enumeration functions
T(n,k) = NonequivalentStructsExactly(CyclicPerms(n), k); \\ Andrew Howroyd, Oct 14 2017
-
R(n) = {Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
{ my(A=R(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019
A294793
Triangle read by rows, 1 <= k <= n: T(n,k) = non-isomorphic colorings of a toroidal n X k grid using exactly four colors under translational symmetry and swappable colors.
Original entry on oeis.org
0, 0, 1, 0, 13, 874, 1, 235, 51075, 10741819, 2, 3437, 2823766, 2261625725, 1870851589562, 13, 51275, 155495153, 486711524815, 1600136051453135, 5465007068038102643, 50, 742651, 8643289534, 107092397450897, 1405227969932349726, 19188864521773558375127, 269482732023591671431784330, 221, 10741763, 486710971595, 24009547064476683
Offset: 1
- F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.
A056359
Number of bracelet structures using exactly four different colored beads.
Original entry on oeis.org
0, 0, 0, 1, 2, 11, 33, 137, 478, 1851, 6845, 26148, 98406, 374010, 1416251, 5380907, 20440250, 77795428, 296384565, 1131011633, 4321964768, 16541275068, 63400061153, 243358803904, 935431121462, 3600520831215, 13876485252323, 53546253055179, 206864927506166, 800068244639812
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
A320644
Number of chiral pairs of color patterns (set partitions) in a cycle of length n using exactly 4 colors (subsets).
Original entry on oeis.org
0, 0, 0, 0, 0, 2, 17, 84, 388, 1586, 6405, 24927, 96404, 368641, 1407515, 5357974, 20403120, 77699323, 296229485, 1130614092, 4321324766, 16539645539, 63397442097, 243352167691, 935420468092, 3600493932070, 13876442107403, 53546144395718, 206864753332164, 800067806813323, 3097590602034137, 12004772596768984, 46568647645538594, 180809553280920680
Offset: 1
For a(6)=2, the chiral pairs are AABACD-AABCAD and AABCBD-AABCDC.
-
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d,Adnk[d,n-1,k-#] &], Boole[n==0 && k==0]]
k=4; Table[DivisorSum[n,EulerPhi[#]Adnk[#,n/#,k]&]/(2n) - Ach[n,k]/2,{n,40}]
A328130
Number of n-bead necklace structures with beads of exactly four colors and no adjacent beads having the same color.
Original entry on oeis.org
0, 0, 0, 1, 1, 5, 10, 33, 83, 237, 640, 1817, 5005, 14099, 39504, 111585, 315235, 894845, 2544220, 7256607, 20738097, 59405343, 170488450, 490221899, 1411923987, 4073098085, 11767069378, 34041318969, 98603778565, 285954140473, 830194632190, 2412764894021, 7018972487319
Offset: 1
Necklace structures for n=4..7 are:
a(4) = 1: ABCD;
a(5) = 1: ABACD;
a(6) = 5: ABABCD, ABACAD, ABACBD, ABACDC, ABCABD;
a(7) = 10: ABABACD, ABABCAD, ABABCBD, ABABCDC, ABACABD, ABACADC, ABACBCD, ABACBDC, ABACDBC, ABCABCD.
A328741
Number of n-bead necklace structures which are not self-equivalent under a nonzero rotation using exactly four different colored beads.
Original entry on oeis.org
0, 0, 0, 0, 2, 9, 50, 206, 862, 3384, 13250, 50852, 194810, 741884, 2823712, 10735998, 40843370, 155483873, 592614050, 2261585918, 8643288808, 33080772468, 126797503250, 486710415710, 1870851589552, 7201012694120, 27752927349880, 107092389688830, 413729680838330
Offset: 1
For n=6, the 9 necklace structures are: aaabcd, aabacd, aabcad, aabbcd, aabcbd, aabcdb, aacbdb, ababcd, abacbd.
A056305
Number of primitive (period n) n-bead necklace structures using exactly four different colored beads.
Original entry on oeis.org
0, 0, 0, 1, 2, 13, 50, 220, 866, 3435, 13250, 51061, 194810, 742601, 2823764, 10738660, 40843370, 155493872, 592614050, 2261622287, 8643289484, 33080907357, 126797503250, 486710920300, 1870851589552
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Showing 1-7 of 7 results.
Comments