cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A152175 Triangle read by rows: T(n,k) is the number of k-block partitions of an n-set up to rotations.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 5, 2, 1, 1, 7, 18, 13, 3, 1, 1, 9, 43, 50, 20, 3, 1, 1, 19, 126, 221, 136, 36, 4, 1, 1, 29, 339, 866, 773, 296, 52, 4, 1, 1, 55, 946, 3437, 4281, 2303, 596, 78, 5, 1, 1, 93, 2591, 13250, 22430, 16317, 5817, 1080, 105, 5, 1, 1, 179, 7254, 51075, 115100, 110462, 52376, 13299, 1873, 147, 6, 1
Offset: 1

Views

Author

Vladeta Jovovic, Nov 27 2008

Keywords

Comments

Number of n-bead necklace structures using exactly k different colored beads. Turning over the necklace is not allowed. Permuting the colors does not change the structure. - Andrew Howroyd, Apr 06 2017

Examples

			Triangle begins with T(1,1):
  1;
  1,   1;
  1,   1,     1;
  1,   3,     2,      1;
  1,   3,     5,      2,      1;
  1,   7,    18,     13,      3,      1;
  1,   9,    43,     50,     20,      3,      1;
  1,  19,   126,    221,    136,     36,      4,      1;
  1,  29,   339,    866,    773,    296,     52,      4,     1;
  1,  55,   946,   3437,   4281,   2303,    596,     78,     5,    1;
  1,  93,  2591,  13250,  22430,  16317,   5817,   1080,   105   , 5,   1;
  1, 179,  7254,  51075, 115100, 110462,  52376,  13299,  1873,  147,   6, 1;
  1, 315, 20125, 194810, 577577, 717024, 439648, 146124, 27654, 3025, 187, 6, 1;
  ...
For T(4,2)=3, the set partitions are AAAB, AABB, and ABAB.
For T(4,3)=2, the set partitions are AABC and ABAC.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Columns 2-6 are A056295, A056296, A056297, A056298, A056299.
Row sums are A084423.
Partial row sums include A000013, A002076, A056292, A056293, A056294.
Cf. A075195, A087854, A008277 (set partitions), A284949 (up to reflection), A152176 (up to rotation and reflection).
A(1,n,k) in formula is the Stirling subset number A008277.
A(2,n,k) in formula is A293181; A(3,n,k) in formula is A294201.

Programs

  • Mathematica
    (* Using recursion formula from Gilbert and Riordan:*)
    Adn[d_, n_] := Adn[d, n] = Which[0==n, 1, 1==n, DivisorSum[d, x^# &],
      1==d, Sum[StirlingS2[n, k] x^k, {k, 0, n}],
      True, Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n - 1], x] x]];
    Table[CoefficientList[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/(x n), x],
       {n, 1, 10}] // Flatten (* Robert A. Russell, Feb 23 2018 *)
    Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d,Adnk[d,n-1,k-#] &], Boole[n==0 && k==0]]
    Table[DivisorSum[n,EulerPhi[#]Adnk[#,n/#,k]&]/n,{n,1,12},{k,1,n}] // Flatten (* Robert A. Russell, Oct 16 2018 *)
  • PARI
    \\ see A056391 for Polya enumeration functions
    T(n,k) = NonequivalentStructsExactly(CyclicPerms(n), k); \\ Andrew Howroyd, Oct 14 2017
    
  • PARI
    R(n) = {Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
    { my(A=R(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019

Formula

T(n,k) = (1/n)*Sum_{d|n} phi(d)*A(d,n/d,k), where A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)). - Robert A. Russell, Oct 16 2018

A294793 Triangle read by rows, 1 <= k <= n: T(n,k) = non-isomorphic colorings of a toroidal n X k grid using exactly four colors under translational symmetry and swappable colors.

Original entry on oeis.org

0, 0, 1, 0, 13, 874, 1, 235, 51075, 10741819, 2, 3437, 2823766, 2261625725, 1870851589562, 13, 51275, 155495153, 486711524815, 1600136051453135, 5465007068038102643, 50, 742651, 8643289534, 107092397450897, 1405227969932349726, 19188864521773558375127, 269482732023591671431784330, 221, 10741763, 486710971595, 24009547064476683
Offset: 1

Views

Author

Marko Riedel, Nov 08 2017

Keywords

Comments

Two colorings are equivalent if there is a permutation of the colors that takes one to the other in addition to translational symmetries on the torus. (Power Group Enumeration.)

References

  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Formula

T(n,k) = (1/(n*k*Q!))*(Sum_{sigma in S_Q} Sum_{d|n} Sum_{f|k} phi(d) phi(f) [[forall j_l(sigma) > 0 : l|lcm(d,f) ]] P(gcd(d,f)*(n/d)*(k/f), sigma)) where P(F, sigma) = F! [z^F] Product_{l=1..Q} (exp(lz)-1)^j_l(sigma) with Q=4. The notation j_l(sigma) is from the Harary text and gives the number of cycles of length l in the permutation sigma. [[.]] is an Iverson bracket.

A056359 Number of bracelet structures using exactly four different colored beads.

Original entry on oeis.org

0, 0, 0, 1, 2, 11, 33, 137, 478, 1851, 6845, 26148, 98406, 374010, 1416251, 5380907, 20440250, 77795428, 296384565, 1131011633, 4321964768, 16541275068, 63400061153, 243358803904, 935431121462, 3600520831215, 13876485252323, 53546253055179, 206864927506166, 800068244639812
Offset: 1

Views

Author

Keywords

Comments

Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 4 of A152176.

Formula

a(n) = A056354(n) - A056353(n).

Extensions

Terms a(27) and beyond from Andrew Howroyd, Oct 24 2019

A320644 Number of chiral pairs of color patterns (set partitions) in a cycle of length n using exactly 4 colors (subsets).

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 17, 84, 388, 1586, 6405, 24927, 96404, 368641, 1407515, 5357974, 20403120, 77699323, 296229485, 1130614092, 4321324766, 16539645539, 63397442097, 243352167691, 935420468092, 3600493932070, 13876442107403, 53546144395718, 206864753332164, 800067806813323, 3097590602034137, 12004772596768984, 46568647645538594, 180809553280920680
Offset: 1

Views

Author

Robert A. Russell, Oct 18 2018

Keywords

Comments

Two color patterns are the same if the colors are permuted. A chiral cycle is different from its reverse.
Adnk[d,n,k] in Mathematica program is coefficient of x^k in A(d,n)(x) in Gilbert and Riordan reference.
There are nonrecursive formulas, generating functions, and computer programs for A056297 and A304974, which can be used in conjunction with the first formula.

Examples

			For a(6)=2, the chiral pairs are AABACD-AABCAD and AABCBD-AABCDC.
		

Crossrefs

Column 4 of A320647.
Cf. A056297 (oriented), A056359 (unoriented), A304974 (achiral).

Programs

  • Mathematica
    Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d,Adnk[d,n-1,k-#] &], Boole[n==0 && k==0]]
    k=4; Table[DivisorSum[n,EulerPhi[#]Adnk[#,n/#,k]&]/(2n) - Ach[n,k]/2,{n,40}]

Formula

a(n) = (A056297(n) - A304974(n)) / 2 = A056297(n) - A056359(n) = A056359(n) - A304974(n).
a(n) = -Ach(n,k)/2 + (1/2n)*Sum_{d|n} phi(d)*A(d,n/d,k), where k=4 is number of colors or sets, Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k)+Ach(n-2,k-1)+Ach(n-2,k-2)), and A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)).

A328130 Number of n-bead necklace structures with beads of exactly four colors and no adjacent beads having the same color.

Original entry on oeis.org

0, 0, 0, 1, 1, 5, 10, 33, 83, 237, 640, 1817, 5005, 14099, 39504, 111585, 315235, 894845, 2544220, 7256607, 20738097, 59405343, 170488450, 490221899, 1411923987, 4073098085, 11767069378, 34041318969, 98603778565, 285954140473, 830194632190, 2412764894021, 7018972487319
Offset: 1

Views

Author

Andrew Howroyd, Oct 04 2019

Keywords

Comments

Colors may be permuted without changing the necklace structure.

Examples

			Necklace structures for n=4..7 are:
a(4) = 1: ABCD;
a(5) = 1: ABACD;
a(6) = 5: ABABCD, ABACAD, ABACBD, ABACDC, ABCABD;
a(7) = 10: ABABACD, ABABCAD, ABABCBD, ABABCDC, ABACABD, ABACADC, ABACBCD, ABACBDC, ABACDBC, ABCABCD.
		

Crossrefs

Column k=4 of A327396.

Extensions

Terms a(24) and beyond from Andrew Howroyd, Oct 09 2019

A328741 Number of n-bead necklace structures which are not self-equivalent under a nonzero rotation using exactly four different colored beads.

Original entry on oeis.org

0, 0, 0, 0, 2, 9, 50, 206, 862, 3384, 13250, 50852, 194810, 741884, 2823712, 10735998, 40843370, 155483873, 592614050, 2261585918, 8643288808, 33080772468, 126797503250, 486710415710, 1870851589552, 7201012694120, 27752927349880, 107092389688830, 413729680838330
Offset: 1

Views

Author

Andrew Howroyd, Oct 26 2019

Keywords

Comments

Permuting the colors does not change the structure.

Examples

			For n=6, the 9 necklace structures are: aaabcd, aabacd, aabcad, aabbcd, aabcbd, aabcdb, aacbdb, ababcd, abacbd.
		

Crossrefs

Column 4 of A327693.

Formula

a(p) = A056297(p) = A056305(p) for prime p.

A056305 Number of primitive (period n) n-bead necklace structures using exactly four different colored beads.

Original entry on oeis.org

0, 0, 0, 1, 2, 13, 50, 220, 866, 3435, 13250, 51061, 194810, 742601, 2823764, 10738660, 40843370, 155493872, 592614050, 2261622287, 8643289484, 33080907357, 126797503250, 486710920300, 1870851589552
Offset: 1

Views

Author

Keywords

Comments

Turning over the necklace is not allowed. Colors may be permuted without changing the necklace structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 4 of A107424.
Cf. A056289.

Formula

Sum mu(d)*A056297(n/d) where d|n. Alternatively, A056300(n)-A002075(n)..
Showing 1-7 of 7 results.