cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A284871 Array read by antidiagonals: T(n,k) = number of primitive (aperiodic) reversible strings of length n using a maximum of k different symbols.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 4, 3, 4, 0, 5, 6, 15, 7, 0, 6, 10, 36, 39, 18, 0, 7, 15, 70, 126, 132, 29, 0, 8, 21, 120, 310, 540, 357, 70, 0, 9, 28, 189, 645, 1620, 2034, 1131, 126, 0, 10, 36, 280, 1197, 3990, 7790, 8316, 3276, 266, 0
Offset: 1

Views

Author

Andrew Howroyd, Apr 04 2017

Keywords

Comments

A string and its reverse are considered to be equivalent.

Examples

			Table starts:
1   2    3     4      5      6       7       8 ...
0   1    3     6     10     15      21      28 ...
0   4   15    36     70    120     189     280 ...
0   7   39   126    310    645    1197    2044 ...
0  18  132   540   1620   3990    8568   16632 ...
0  29  357  2034   7790  23295   58779  131012 ...
0  70 1131  8316  39370 140610  412965 1050616 ...
0 126 3276 32760 195300 839790 2882376 8388576 ...
...
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Columns 2-6 are A045625, A056314, A056315, A056316, A056317.

Programs

  • Mathematica
    b[n_, k_] := (k^n + k^Ceiling[n/2])/2;
    a[n_, k_] := DivisorSum[n, MoebiusMu[n/#] b[#, k]&];
    Table[a[n-k+1, k], {n, 1, 10}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jun 05 2017, translated from PARI *)
  • PARI
    b(n,k) = (k^n + k^(ceil(n/2))) / 2;
    a(n,k) = sumdiv(n,d, moebius(n/d) * b(d,k));
    for(n=1, 10, for(k=1, 10, print1( a(n,k),", ");); print(););

Formula

T(n, k) = Sum_{d | n} mu(n/d) * (k^n + k^(ceiling(n/2))) / 2.

A056315 Number of primitive (aperiodic) reversible strings with n beads using a maximum of four different colors.

Original entry on oeis.org

4, 6, 36, 126, 540, 2034, 8316, 32760, 131544, 524250, 2099196, 8388450, 33562620, 134217594, 536903100, 2147483520, 8590065660, 34359735816, 137439477756, 549755813250, 2199025344348, 8796093020154
Offset: 1

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 4 of A284871.

Formula

Sum mu(d)*A032121(n/d) where d|n.

A056332 Number of primitive (aperiodic) reversible string structures with n beads using a maximum of three different colors.

Original entry on oeis.org

1, 1, 3, 8, 24, 65, 195, 564, 1677, 4976, 14883, 44452, 133224, 399113, 1196808, 3588840, 10764960, 32289855, 96864963, 290580040, 871725426, 2615132465, 7845353475, 23535926760, 70607649816, 211822550576
Offset: 1

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent. Permuting the colors will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Programs

  • Mathematica
    a1998[n_] := If[OddQ[n], (1/4)*(3^n + 4*3^((n-1)/2) + 1), (1/4)*(3^n + 2*3^(n/2) + 1)];
    a[n_] := DivisorSum[n, MoebiusMu[#] a1998[n/#-1]&];
    Array[a, 26] (* Jean-François Alcover, Jun 29 2018 *)

Formula

a(n) = Sum mu(d)*A001998(n/d-1) where d|n.

A056319 Number of primitive (aperiodic) reversible strings with n beads using exactly three different colors.

Original entry on oeis.org

0, 0, 3, 18, 78, 270, 921, 2898, 9147, 27987, 85773, 259557, 785778, 2366892, 7128120, 21425040, 64382550, 193316685, 580372293, 1741819245, 5227115454, 15684238080, 47059266081, 141189599250
Offset: 1

Views

Author

Keywords

Comments

Each string and its reverse are considered to be equivalent.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Cf. A056314.

Formula

Sum mu(d)*A056310(n/d) where d|n.
Showing 1-4 of 4 results.