cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056341 Number of bracelets of length n using a maximum of six different colored beads.

Original entry on oeis.org

6, 21, 56, 231, 888, 4291, 20646, 107331, 563786, 3037314, 16514106, 90782986, 502474356, 2799220041, 15673673176, 88162676511, 497847963696, 2821127825971, 16035812864946, 91404068329560
Offset: 1

Views

Author

Keywords

Comments

Turning over will not create a new bracelet.

Examples

			For n=2, the 21 bracelets are AA, AB, AC, AD, AE, AF, BB, BC, BD, BE, BF, CC, CD, CE, CF, DD, DE, DF, EE, EF, and FF. - _Robert A. Russell_, Sep 24 2018
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]

Crossrefs

Cf. a(n) = A081720(n,6), n >= 6. - Wolfdieter Lang, Jun 03 2012
Column 6 of A051137.
Equals (A054625 + A056488) / 2 = A054625 - A278642 = A278642 + A056488.

Programs

  • Mathematica
    mx=40;CoefficientList[Series[(1-Sum[ EulerPhi[n]*Log[1-6*x^n]/n,{n,mx}]+(1+6 x+15 x^2)/(1-6 x^2))/2,{x,0,mx}],x] (* Herbert Kociemba, Nov 02 2016 *)
    k=6; Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) + (k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}] (* Robert A. Russell, Sep 24 2018 *)

Formula

a(n) = Sum_{d|n} phi(d)*6^(n/d)/(2*n);
a(n) = 6^((n+1)/2)/2 for n odd,
(7/4)*6^(n/2) for n even.
G.f.: (1 - Sum_{n>=1} phi(n)*log(1 - 6*x^n)/n + (1+6*x+15*x^2)/(1-6*x^2))/2. - Herbert Kociemba, Nov 02 2016