cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056343 Number of bracelets of length n using exactly three different colored beads.

Original entry on oeis.org

0, 0, 1, 6, 18, 56, 147, 411, 1084, 2979, 8043, 22244, 61278, 171030, 477929, 1345236, 3795750, 10758902, 30572427, 87149124, 248991822, 713096352, 2046303339, 5883433409, 16944543810, 48879769575
Offset: 1

Views

Author

Keywords

Comments

Turning over will not create a new bracelet.

Examples

			For a(4)=6, the arrangements are ABAC, ABCB, ACBC, AABC, ABBC, and ABCC. Only the last three are chiral, their reverses being AACB, ACBB, and ACCB respectively. - _Robert A. Russell_, Sep 26 2018
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 3 of A273891.
Equals (A056283 + A056489) / 2 = A056283 - A305542 = A305542 + A056489.

Programs

  • Mathematica
    t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]);
    T[n_, k_] := Sum[(-1)^i*Binomial[k, i]*t[n, k - i], {i, 0, k - 1}];
    a[n_] := T[n, 3];
    Array[a, 26] (* Jean-François Alcover, Nov 05 2017, after Andrew Howroyd *)
    k=3; Table[k! DivisorSum[n, EulerPhi[#] StirlingS2[n/#,k]&]/(2n) + k!(StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k])/4, {n,1,30}] (* Robert A. Russell, Sep 26 2018 *)

Formula

a(n) = A027671(n) - 3*A000029(n) + 3.
From Robert A. Russell, Sep 26 2018: (Start)
a(n) = (k!/4) * (S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/2n) * Sum_{d|n} phi(d) * S2(n/d,k), where k=3 is the number of colors and S2 is the Stirling subset number A008277.
G.f.: (k!/4) * x^(2k-2) * (1+x)^2 / Product_{i=1..k} (1-i x^2) - Sum_{d>0} (phi(d)/2d) * Sum_{j} (-1)^(k-j) * C(k,j) * log(1-j x^d), where k=3 is the number of colors. (End)