A056458 Number of primitive (aperiodic) palindromes using a maximum of two different symbols.
2, 0, 2, 2, 6, 4, 14, 12, 28, 24, 62, 54, 126, 112, 246, 240, 510, 476, 1022, 990, 2030, 1984, 4094, 4020, 8184, 8064, 16352, 16254, 32766, 32484, 65534, 65280, 131006, 130560, 262122, 261576, 524286, 523264, 1048446, 1047540, 2097150, 2094988, 4194302, 4192254
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..6610
- M. R. Nester, Mathematical investigations of some plant interaction designs, PhD Thesis, (1999), University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Programs
-
Maple
f:= proc(n) local d; add(numtheory:-mobius(d)*2^floor((1+n/d)/2), d = numtheory:-divisors(n)) end proc: map(f, [$1..50]); # Robert Israel, Feb 18 2025
-
PARI
a(n) = sumdiv(n, d, moebius(d)*2^((1 + n/d)\2)); \\ Michel Marcus, Apr 24 2020
-
Python
from sympy import mobius, divisors def A056458(n): return sum(mobius(n//d)<<(1+d>>1) for d in divisors(n, generator=True)) # Chai Wah Wu, Feb 18 2024
Formula
a(n) = Sum_{d|n} mu(d)*A016116(1 + n/d).
a(n) = 2 * A056476(n). - Alois P. Heinz, Feb 18 2025
Extensions
More terms from Michel Marcus, Apr 24 2020