cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A284823 Array read by antidiagonals: T(n,k) = number of primitive (aperiodic) palindromes of length n using a maximum of k different symbols (n >= 1, k >= 1).

Original entry on oeis.org

1, 2, 0, 3, 0, 0, 4, 0, 2, 0, 5, 0, 6, 2, 0, 6, 0, 12, 6, 6, 0, 7, 0, 20, 12, 24, 4, 0, 8, 0, 30, 20, 60, 18, 14, 0, 9, 0, 42, 30, 120, 48, 78, 12, 0, 10, 0, 56, 42, 210, 100, 252, 72, 28, 0, 11, 0, 72, 56, 336, 180, 620, 240, 234, 24, 0, 12, 0, 90, 72, 504, 294, 1290, 600, 1008, 216, 62
Offset: 1

Views

Author

Andrew Howroyd, Apr 03 2017

Keywords

Examples

			Table starts:
1  2   3    4    5    6     7     8     9    10 ...
0  0   0    0    0    0     0     0     0     0 ...
0  2   6   12   20   30    42    56    72    90 ...
0  2   6   12   20   30    42    56    72    90 ...
0  6  24   60  120  210   336   504   720   990 ...
0  4  18   48  100  180   294   448   648   900 ...
0 14  78  252  620 1290  2394  4088  6552  9990 ...
0 12  72  240  600 1260  2352  4032  6480  9900 ...
0 28 234 1008 3100 7740 16758 32704 58968 99900 ...
0 24 216  960 3000 7560 16464 32256 58320 99000 ...
...
Row 4 includes palindromes of the form abba but excludes those of the form aaaa, so T(4,k) is k*(k-1).
Row 6 includes palindromes of the forms aabbaa, abbbba, abccba but excludes those of the forms aaaaaa, abaaba, so T(6,k) is 2*k*(k-1) + k*(k-1)*(k-2).
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Columns 2-6 are A056458, A056459, A056460, A056461, A056462.
Rows 5-10 are A007531(k+1), A045991, A058895, A047928(k-1), A135497, A133754.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, MoebiusMu[n/#]*k^Ceiling[#/2]&]; Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jun 05 2017 *)
  • PARI
    a(n,k) = sumdiv(n, d, moebius(n/d) * k^(ceil(d/2)));
    for(n=1, 10, for(k=1, 10, print1( a(n,k),", ");); print();)

Formula

T(n,k) = Sum_{d | n} mu(n/d) * k^(ceiling(d/2)).

A056477 Number of primitive (aperiodic) palindromic structures using a maximum of three different symbols.

Original entry on oeis.org

1, 1, 0, 1, 1, 4, 3, 13, 12, 39, 36, 121, 116, 364, 351, 1088, 1080, 3280, 3237, 9841, 9800, 29510, 29403, 88573, 88440, 265716, 265356, 797121, 796796, 2391484, 2390352, 7174453, 7173360, 21523238, 21520080, 64570064, 64566684, 193710244, 193700403, 581130368, 581120880
Offset: 0

Views

Author

Keywords

Comments

Permuting the symbols will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Formula

a(n) = Sum_{d|n} mu(d)*A124302(ceiling(n/(2*d))) for n > 0.
a(n) = Sum_{k=1..3} A284826(n, k) for n > 0. - Andrew Howroyd, Oct 02 2019

Extensions

a(0)=1 prepended and terms a(32) and beyond from Andrew Howroyd, Oct 02 2019

A056464 Number of primitive (aperiodic) palindromes using exactly three different symbols.

Original entry on oeis.org

0, 0, 0, 0, 6, 6, 36, 36, 150, 144, 540, 534, 1806, 1770, 5790, 5760, 18150, 17994, 55980, 55830, 170970, 170466, 519156, 518580, 1569744, 1567944, 4733670, 4732014, 14250606, 14244660, 42850116, 42844320, 128746410, 128728800
Offset: 1

Views

Author

Keywords

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 3 of A327873.

Programs

  • Maple
    with(numtheory):with(combinat,stirling2):A056454:=n->3!*stirling2(floor((n+1)/2),3);A056464:=n->add(mobius(d)*A056454(n/d),d=divisors(n)); # C. Ronaldo

Formula

a(n) = Sum_{d|n} mu(d)*A056454(n/d).

A056494 Number of primitive (period n) periodic palindromes using a maximum of three different symbols.

Original entry on oeis.org

3, 3, 6, 12, 24, 42, 78, 144, 234, 456, 726, 1392, 2184, 4290, 6528, 12960, 19680, 39078, 59046, 117600, 177060, 353562, 531438, 1061280, 1594296, 3186456, 4782726, 9561552, 14348904, 28690752, 43046718
Offset: 1

Views

Author

Keywords

Comments

For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome.
Number of aperiodic necklaces with three colors that are the same when turned over and hence have reflectional symmetry but no rotational symmetry. - Herbert Kociemba, Nov 29 2016

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 3 of A284856.
Cf. A056459.

Programs

  • Mathematica
    mx=40;gf[x_,k_]:=Sum[ MoebiusMu[n]*Sum[Binomial[k,i]x^(n i),{i,0,2}]/( 1-k x^(2n)),{n,mx}]; CoefficientList[Series[gf[x,3],{x,0,mx}],x] (* Herbert Kociemba, Nov 29 2016 *)

Formula

a(n) = Sum_{d|n} mu(d)*A038754(n/d+1).
From Herbert Kociemba, Nov 29 2016: (Start)
More generally, gf(k) is the g.f. for the number of necklaces with reflectional symmetry but no rotational symmetry and beads of k colors.
gf(k): Sum_{n>=1} mu(n)*Sum_{i=0..2} binomial(k,i)x^(n*i)/(1-k*x^(2*n)). (End)
Showing 1-4 of 4 results.