cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A327873 Irregular triangle read by rows: T(n,k) is the number of length n primitive (aperiodic) palindromes using exactly k different symbols, 1 <= k <= ceiling(n/2).

Original entry on oeis.org

1, 0, 0, 2, 0, 2, 0, 6, 6, 0, 4, 6, 0, 14, 36, 24, 0, 12, 36, 24, 0, 28, 150, 240, 120, 0, 24, 144, 240, 120, 0, 62, 540, 1560, 1800, 720, 0, 54, 534, 1560, 1800, 720, 0, 126, 1806, 8400, 16800, 15120, 5040, 0, 112, 1770, 8376, 16800, 15120, 5040
Offset: 1

Views

Author

Andrew Howroyd, Sep 28 2019

Keywords

Examples

			Triangle begins:
  1;
  0;
  0,   2;
  0,   2;
  0,   6,    6;
  0,   4,    6;
  0,  14,   36,   24;
  0,  12,   36,   24;
  0,  28,  150,  240,   120;
  0,  24,  144,  240,   120;
  0,  62,  540, 1560,  1800,   720;
  0,  54,  534, 1560,  1800,   720;
  0, 126, 1806, 8400, 16800, 15120, 5040;
  0, 112, 1770, 8376, 16800, 15120, 5040;
  ...
		

Crossrefs

Columns k=2..6 are A056463, A056464, A056465, A056466, A056467.
Row sums are A327874.

Programs

  • PARI
    T(n,k) = {sumdiv(n, d, moebius(n/d)*k!*stirling(ceil(d/2), k, 2))}

Formula

T(n,k) = Sum_{j=1..k} (-1)^(k-j)*binomial(k,j)*A284823(n,j).
T(n,k) = Sum_{d|n} mu(n/d)*k!*Stirling2(ceiling(d/2), k).

A056482 Number of primitive (aperiodic) palindromic structures using exactly three different symbols.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 6, 6, 25, 24, 90, 89, 301, 295, 965, 960, 3025, 2999, 9330, 9305, 28495, 28411, 86526, 86430, 261624, 261324, 788945, 788669, 2375101, 2374110, 7141686
Offset: 1

Views

Author

Keywords

Comments

Permuting the symbols will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 3 of A284826.
Cf. A056464.

Formula

A056499 Number of primitive (period n) periodic palindromes using exactly three different symbols.

Original entry on oeis.org

0, 0, 0, 3, 6, 21, 36, 90, 150, 339, 540, 1149, 1806, 3765, 5790, 11880, 18150, 36894, 55980, 113145, 170970, 344541, 519156, 1043190, 1569744, 3149979, 4733670, 9488409, 14250606, 28544205, 42850116, 85786560, 128746410, 257672355, 386634018, 773623116, 1160688606
Offset: 1

Views

Author

Keywords

Comments

For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 3 of A327878.

Formula

a(n) = Sum_{d|n} mu(d)*A056489(n/d).

Extensions

Terms a(32) and beyond from Andrew Howroyd, Sep 28 2019
Showing 1-3 of 3 results.