cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A327878 Irregular triangle read by rows: T(n,k) is the number of primitive (period n) periodic palindromes using exactly k different symbols, 1 <= k <= 1 + floor(n/2).

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 3, 3, 0, 6, 6, 0, 7, 21, 12, 0, 14, 36, 24, 0, 18, 90, 132, 60, 0, 28, 150, 240, 120, 0, 39, 339, 900, 960, 360, 0, 62, 540, 1560, 1800, 720, 0, 81, 1149, 4968, 9300, 7920, 2520, 0, 126, 1806, 8400, 16800, 15120, 5040, 0, 175, 3765, 24588, 71400, 103320, 73080, 20160
Offset: 1

Views

Author

Andrew Howroyd, Sep 28 2019

Keywords

Comments

Primitive periodic palindromes may also be called achiral Lyndon words.

Examples

			Triangle begins:
  1;
  0,   1;
  0,   2;
  0,   3,    3;
  0,   6,    6;
  0,   7,   21,    12;
  0,  14,   36,    24;
  0,  18,   90,   132,    60;
  0,  28,  150,   240,   120;
  0,  39,  339,   900,   960,    360;
  0,  62,  540,  1560,  1800,    720;
  0,  81, 1149,  4968,  9300,   7920,  2520;
  0, 126, 1806,  8400, 16800,  15120,  5040;
  0, 175, 3765, 24588, 71400, 103320, 73080, 20160;
  ...
		

Crossrefs

Columns k=2..6 are A056498, A056499, A056500, A056501, A056502.
Row sums are A327879.

Programs

  • PARI
    T(n,k) = {sumdiv(n, d, moebius(n/d) * k! * (stirling((d+1)\2,k,2) + stirling(d\2+1,k,2)))/2}

Formula

T(n,k) = Sum_{j=1..k} (-1)^(k-j)*binomial(k,j)*A284856(n,j).
Column k is the Moebius transform of column k of A305540.

A056463 Number of primitive (aperiodic) palindromes using exactly two different symbols.

Original entry on oeis.org

0, 0, 2, 2, 6, 4, 14, 12, 28, 24, 62, 54, 126, 112, 246, 240, 510, 476, 1022, 990, 2030, 1984, 4094, 4020, 8184, 8064, 16352, 16254, 32766, 32484, 65534, 65280, 131006, 130560, 262122, 261576, 524286, 523264, 1048446, 1047540, 2097150, 2094988, 4194302, 4192254
Offset: 1

Views

Author

Keywords

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 2 of A327873.

Programs

  • PARI
    seq(n)={Vec(sum(k=1, n\3, moebius(k)*2*x^(3*k)/((1 - 2*x^(2*k))*(1 - x^k)) + O(x*x^n)), -n)} \\ Andrew Howroyd, Sep 29 2019
    
  • Python
    from sympy import mobius, divisors
    def A056463(n): return sum(mobius(n//d)*((1<<(d+1>>1))-2) for d in divisors(n, generator=True)) # Chai Wah Wu, Feb 18 2024

Formula

a(n) = Sum_{d|n} mu(d)*A056453(n/d).
G.f.: Sum_{k>=1} mu(k)*2*x^(3*k)/((1 - 2*x^(2*k))*(1 - x^k)). - Andrew Howroyd, Sep 29 2019

Extensions

Terms a(32) and beyond from Andrew Howroyd, Sep 28 2019

A056464 Number of primitive (aperiodic) palindromes using exactly three different symbols.

Original entry on oeis.org

0, 0, 0, 0, 6, 6, 36, 36, 150, 144, 540, 534, 1806, 1770, 5790, 5760, 18150, 17994, 55980, 55830, 170970, 170466, 519156, 518580, 1569744, 1567944, 4733670, 4732014, 14250606, 14244660, 42850116, 42844320, 128746410, 128728800
Offset: 1

Views

Author

Keywords

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 3 of A327873.

Programs

  • Maple
    with(numtheory):with(combinat,stirling2):A056454:=n->3!*stirling2(floor((n+1)/2),3);A056464:=n->add(mobius(d)*A056454(n/d),d=divisors(n)); # C. Ronaldo

Formula

a(n) = Sum_{d|n} mu(d)*A056454(n/d).

A056465 Number of primitive (aperiodic) palindromes using exactly four different symbols.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 24, 24, 240, 240, 1560, 1560, 8400, 8376, 40824, 40800, 186480, 186240, 818520, 818280, 3497976, 3496440, 14676024, 14674440, 60780720, 60772320, 249401640, 249393480, 1016542800, 1016501736, 4123173624, 4123132800, 16664093400, 16663908480
Offset: 1

Views

Author

Keywords

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 4 of A327873.

Formula

a(n) = Sum_{d|n} mu(d)*A056455(n/d).

Extensions

Terms a(31) and beyond from Andrew Howroyd, Sep 28 2019

A056466 Number of primitive (aperiodic) palindromes using exactly five different symbols.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 120, 120, 1800, 1800, 16800, 16800, 126000, 126000, 834120, 834000, 5103000, 5102880, 29607600, 29605800, 165528000, 165526200, 901020120, 901003320, 4809004080, 4808987400, 25292030400, 25291904280, 131542866000, 131542740000
Offset: 1

Views

Author

Keywords

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 5 of A327873.

Formula

a(n) = Sum_{d|n} mu(d)*A056456(n/d).

Extensions

Terms a(30) and beyond from Andrew Howroyd, Sep 29 2019

A056467 Number of primitive (aperiodic) palindromes using exactly six different symbols.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 720, 720, 15120, 15120, 191520, 191520, 1905120, 1905120, 16435440, 16435440, 129230640, 129229920, 953029440, 953028720, 6711344640, 6711329520, 45674188560, 45674173440, 302899156560, 302898965040, 1969147121760, 1969146930240
Offset: 1

Views

Author

Keywords

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 6 of A327873.

Formula

a(n) = Sum_{d|n} mu(d)*A056457(n/d).

Extensions

Terms a(28) and beyond from Andrew Howroyd, Sep 29 2019

A327874 Number of length n primitive (aperiodic) palindromes with integer entries that cover an initial interval of positive integers.

Original entry on oeis.org

1, 1, 0, 2, 2, 12, 10, 74, 72, 538, 528, 4682, 4668, 47292, 47218, 545820, 545760, 7087260, 7086710, 102247562, 102247020, 1622632496, 1622627890, 28091567594, 28091562840, 526858348368, 526858301088, 10641342969902, 10641342923148, 230283190977852, 230283190431480
Offset: 0

Views

Author

Andrew Howroyd, Sep 28 2019

Keywords

Crossrefs

Row sums of A327873.

Programs

  • PARI
    a(n) = {if(n<1, n==0, sumdiv(n, d, moebius(n/d)*sum(k=1, ceil(d/2), k!*stirling(ceil(d/2), k, 2))))}

Formula

a(n) = Sum_{d|n} mu(n/d)*A000670(ceiling(d/2)) for n > 0.
Showing 1-7 of 7 results.