cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A327873 Irregular triangle read by rows: T(n,k) is the number of length n primitive (aperiodic) palindromes using exactly k different symbols, 1 <= k <= ceiling(n/2).

Original entry on oeis.org

1, 0, 0, 2, 0, 2, 0, 6, 6, 0, 4, 6, 0, 14, 36, 24, 0, 12, 36, 24, 0, 28, 150, 240, 120, 0, 24, 144, 240, 120, 0, 62, 540, 1560, 1800, 720, 0, 54, 534, 1560, 1800, 720, 0, 126, 1806, 8400, 16800, 15120, 5040, 0, 112, 1770, 8376, 16800, 15120, 5040
Offset: 1

Views

Author

Andrew Howroyd, Sep 28 2019

Keywords

Examples

			Triangle begins:
  1;
  0;
  0,   2;
  0,   2;
  0,   6,    6;
  0,   4,    6;
  0,  14,   36,   24;
  0,  12,   36,   24;
  0,  28,  150,  240,   120;
  0,  24,  144,  240,   120;
  0,  62,  540, 1560,  1800,   720;
  0,  54,  534, 1560,  1800,   720;
  0, 126, 1806, 8400, 16800, 15120, 5040;
  0, 112, 1770, 8376, 16800, 15120, 5040;
  ...
		

Crossrefs

Columns k=2..6 are A056463, A056464, A056465, A056466, A056467.
Row sums are A327874.

Programs

  • PARI
    T(n,k) = {sumdiv(n, d, moebius(n/d)*k!*stirling(ceil(d/2), k, 2))}

Formula

T(n,k) = Sum_{j=1..k} (-1)^(k-j)*binomial(k,j)*A284823(n,j).
T(n,k) = Sum_{d|n} mu(n/d)*k!*Stirling2(ceiling(d/2), k).

A056481 Number of primitive (aperiodic) palindromic structures using exactly two different symbols.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 2, 7, 6, 14, 12, 31, 27, 63, 56, 123, 120, 255, 238, 511, 495, 1015, 992, 2047, 2010, 4092, 4032, 8176, 8127, 16383, 16242, 32767, 32640, 65503, 65280, 131061, 130788, 262143, 261632, 524223, 523770, 1048575, 1047494, 2097151, 2096127, 4194162
Offset: 0

Views

Author

Keywords

Comments

Permuting the symbols will not change the structure. Identical to A056476 for n>1.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 2 of A284826.
Cf. A056463.

Programs

  • Python
    from sympy import mobius, divisors
    def A056481(n): return sum(mobius(n//d)<<(d-1>>1) for d in divisors(n, generator=True)) if n>1 else 0 # Chai Wah Wu, Feb 18 2024

Formula

a(n) = A056476(n) - A000007(n) - A000007(n-1).

Extensions

More terms (using A056476) from Joerg Arndt, May 22 2021

A056498 Number of primitive (period n) periodic palindromes using exactly two different symbols.

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 14, 18, 28, 39, 62, 81, 126, 175, 246, 360, 510, 728, 1022, 1485, 2030, 3007, 4094, 6030, 8184, 12159, 16352, 24381, 32766, 48849, 65534, 97920, 131006, 196095, 262122, 392364, 524286, 785407, 1048446, 1571310, 2097150, 3143497, 4194302, 6288381
Offset: 1

Views

Author

Keywords

Comments

For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 2 of A327878.

Programs

  • PARI
    seq(n)={Vec(sum(k=1, n\2, moebius(k)*x^(2*k)*(1 + x^k)/((1 - x^k)*(1 - 2*x^(2*k))) + O(x*x^n)), -n)} \\ Andrew Howroyd, Sep 29 2019

Formula

a(n) = Sum_{d|n} mu(d)*A027383(n/d-2) assuming that A027383(-1)=0.
G.f.: Sum_{k>=1} mu(k)*x^(2*k)*(1 + x^k)/((1 - x^k)*(1 - 2*x^(2*k))). - Andrew Howroyd, Sep 29 2019

Extensions

Terms a(32) and beyond from Andrew Howroyd, Sep 28 2019
Showing 1-3 of 3 results.