cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A327873 Irregular triangle read by rows: T(n,k) is the number of length n primitive (aperiodic) palindromes using exactly k different symbols, 1 <= k <= ceiling(n/2).

Original entry on oeis.org

1, 0, 0, 2, 0, 2, 0, 6, 6, 0, 4, 6, 0, 14, 36, 24, 0, 12, 36, 24, 0, 28, 150, 240, 120, 0, 24, 144, 240, 120, 0, 62, 540, 1560, 1800, 720, 0, 54, 534, 1560, 1800, 720, 0, 126, 1806, 8400, 16800, 15120, 5040, 0, 112, 1770, 8376, 16800, 15120, 5040
Offset: 1

Views

Author

Andrew Howroyd, Sep 28 2019

Keywords

Examples

			Triangle begins:
  1;
  0;
  0,   2;
  0,   2;
  0,   6,    6;
  0,   4,    6;
  0,  14,   36,   24;
  0,  12,   36,   24;
  0,  28,  150,  240,   120;
  0,  24,  144,  240,   120;
  0,  62,  540, 1560,  1800,   720;
  0,  54,  534, 1560,  1800,   720;
  0, 126, 1806, 8400, 16800, 15120, 5040;
  0, 112, 1770, 8376, 16800, 15120, 5040;
  ...
		

Crossrefs

Columns k=2..6 are A056463, A056464, A056465, A056466, A056467.
Row sums are A327874.

Programs

  • PARI
    T(n,k) = {sumdiv(n, d, moebius(n/d)*k!*stirling(ceil(d/2), k, 2))}

Formula

T(n,k) = Sum_{j=1..k} (-1)^(k-j)*binomial(k,j)*A284823(n,j).
T(n,k) = Sum_{d|n} mu(n/d)*k!*Stirling2(ceiling(d/2), k).

A056498 Number of primitive (period n) periodic palindromes using exactly two different symbols.

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 14, 18, 28, 39, 62, 81, 126, 175, 246, 360, 510, 728, 1022, 1485, 2030, 3007, 4094, 6030, 8184, 12159, 16352, 24381, 32766, 48849, 65534, 97920, 131006, 196095, 262122, 392364, 524286, 785407, 1048446, 1571310, 2097150, 3143497, 4194302, 6288381
Offset: 1

Views

Author

Keywords

Comments

For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 2 of A327878.

Programs

  • PARI
    seq(n)={Vec(sum(k=1, n\2, moebius(k)*x^(2*k)*(1 + x^k)/((1 - x^k)*(1 - 2*x^(2*k))) + O(x*x^n)), -n)} \\ Andrew Howroyd, Sep 29 2019

Formula

a(n) = Sum_{d|n} mu(d)*A027383(n/d-2) assuming that A027383(-1)=0.
G.f.: Sum_{k>=1} mu(k)*x^(2*k)*(1 + x^k)/((1 - x^k)*(1 - 2*x^(2*k))). - Andrew Howroyd, Sep 29 2019

Extensions

Terms a(32) and beyond from Andrew Howroyd, Sep 28 2019

A327879 Number of primitive (period n) periodic palindromes with integer entries that cover an initial interval of positive integers.

Original entry on oeis.org

1, 1, 1, 2, 6, 12, 40, 74, 300, 538, 2598, 4682, 25938, 47292, 296488, 545820, 3816240, 7087260, 54666830, 102247562, 862437450, 1622632496, 14857095400, 28091567594, 277474931700, 526858348368, 5584100612118, 10641342969902, 120462266677578
Offset: 0

Views

Author

Andrew Howroyd, Sep 28 2019

Keywords

Examples

			The a(4) = 6 primitive periodic palindromes are:
  1122, 1112, 1222,
  1213, 1232, 1323.
		

Crossrefs

Row sums of A327878.

Programs

  • PARI
    a(n)={if(n<1, n==0, sumdiv(n, d, moebius(n/d)*sum(k=0, n, k!*(stirling((d+1)\2, k, 2)+stirling(d\2+1, k, 2))))/2)}

Formula

Moebius transform of A327868.

A056499 Number of primitive (period n) periodic palindromes using exactly three different symbols.

Original entry on oeis.org

0, 0, 0, 3, 6, 21, 36, 90, 150, 339, 540, 1149, 1806, 3765, 5790, 11880, 18150, 36894, 55980, 113145, 170970, 344541, 519156, 1043190, 1569744, 3149979, 4733670, 9488409, 14250606, 28544205, 42850116, 85786560, 128746410, 257672355, 386634018, 773623116, 1160688606
Offset: 1

Views

Author

Keywords

Comments

For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 3 of A327878.

Formula

a(n) = Sum_{d|n} mu(d)*A056489(n/d).

Extensions

Terms a(32) and beyond from Andrew Howroyd, Sep 28 2019

A056500 Number of primitive (period n) periodic palindromes using exactly four different symbols.

Original entry on oeis.org

0, 0, 0, 0, 0, 12, 24, 132, 240, 900, 1560, 4968, 8400, 24588, 40824, 113520, 186480, 502248, 818520, 2157360, 3497976, 9085452, 14676024, 37723260, 60780720, 155082900, 249401640, 632947728, 1016542800, 2569816476, 4123173624, 10393520640
Offset: 1

Views

Author

Keywords

Examples

			For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 4 of A327878.

Formula

a(n) = Sum_{d|n} mu(d)*A056490(n/d).

Extensions

Terms corrected by Andrew Howroyd, Sep 28 2019

A056501 Number of primitive (period n) periodic palindromes using exactly five different symbols.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 60, 120, 960, 1800, 9300, 16800, 71400, 126000, 480000, 834120, 2968440, 5103000, 17354340, 29607600, 97566000, 165528000, 533264700, 901020120, 2854995360, 4809004080, 15050445900, 25292030400, 78417321240, 131542866000, 404936052000
Offset: 1

Views

Author

Keywords

Examples

			For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 5 of A327878.

Formula

a(n) = Sum_{d|n} mu(d)*A056491(n/d).

Extensions

Terms corrected by Andrew Howroyd, Sep 28 2019

A056502 Number of primitive (period n) periodic palindromes using exactly six different symbols.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 360, 720, 7920, 15120, 103320, 191520, 1048320, 1905120, 9170280, 16435440, 72832680, 129230640, 541129320, 953029440, 3832179120, 6711344640, 26192751480, 45674188560, 174286569240, 302899156560, 1136022947280, 1969147121760
Offset: 1

Views

Author

Keywords

Examples

			For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 6 of A327878.

Formula

a(n) = Sum_{d|n} mu(d)*A056492(n/d).

Extensions

Terms a(28) and beyond from Andrew Howroyd, Sep 28 2019
Showing 1-7 of 7 results.