A056498 Number of primitive (period n) periodic palindromes using exactly two different symbols.
0, 1, 2, 3, 6, 7, 14, 18, 28, 39, 62, 81, 126, 175, 246, 360, 510, 728, 1022, 1485, 2030, 3007, 4094, 6030, 8184, 12159, 16352, 24381, 32766, 48849, 65534, 97920, 131006, 196095, 262122, 392364, 524286, 785407, 1048446, 1571310, 2097150, 3143497, 4194302, 6288381
Offset: 1
Keywords
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Programs
-
PARI
seq(n)={Vec(sum(k=1, n\2, moebius(k)*x^(2*k)*(1 + x^k)/((1 - x^k)*(1 - 2*x^(2*k))) + O(x*x^n)), -n)} \\ Andrew Howroyd, Sep 29 2019
Formula
G.f.: Sum_{k>=1} mu(k)*x^(2*k)*(1 + x^k)/((1 - x^k)*(1 - 2*x^(2*k))). - Andrew Howroyd, Sep 29 2019
Extensions
Terms a(32) and beyond from Andrew Howroyd, Sep 28 2019
Comments