A056513 Number of primitive (period n) periodic palindromic structures using a maximum of two different symbols.
1, 1, 1, 1, 2, 3, 4, 7, 10, 14, 21, 31, 42, 63, 91, 123, 184, 255, 371, 511, 750, 1015, 1519, 2047, 3030, 4092, 6111, 8176, 12222, 16383, 24486, 32767, 49024, 65503, 98175, 131061, 196308, 262143, 392959, 524223, 785910, 1048575, 1572256, 2097151, 3144702, 4194162
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Sep 16 2018: (Start) The sequence of palindromic Lyndon compositions begins: (1) (2) (3) (4) (5) (6) (7) (112) (113) (114) (115) (122) (1122) (133) (11112) (223) (11113) (11212) (11122) (End)
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
(* b = A164090, c = A045674 *) b[n_] := (1/4)*(7 - (-1)^n)*2^((1/4)*(2*n + (-1)^n - 1)); c[0] = 1; c[n_] := c[n] = If[EvenQ[n], 2^(n/2 - 1) + c[n/2], 2^((n - 1)/2)]; a56503[n_] := If[OddQ[n], b[n]/2, (1/2)*(b[n] + c[n/2])]; a[n_] := DivisorSum[n, MoebiusMu[#] a56503[n/#]&]; Array[a, 45] (* Jean-François Alcover, Jun 29 2018, after Andrew Howroyd *)
-
PARI
a(n) = {if(n < 1, n==0, sumdiv(n, d, moebius(d)*(2 + d%2)*(2^(n/d\2)))/(4 - n%2))} \\ Andrew Howroyd, Sep 26 2019
-
PARI
seq(n) = Vec(1 + (1/2)*sum(k=1, n, moebius(k)*x^k*(2 + 3*x^k)/(1 - 2*x^(2*k)) - moebius(2*k)*x^(2*k)*(1 + x^(2*k))/(1 - 2*x^(4*k)) + O(x*x^n))) \\ Andrew Howroyd, Sep 27 2019
Formula
a(n) = Sum_{d|n} mu(d)*A056503(n/d) for n > 0.
a(n) = Sum_{k=1..2} A285037(n, k). - Andrew Howroyd, Apr 08 2017
G.f.: 1 + (1/2)*Sum_{k>=1} mu(k)*x^k*(2 + 3*x^k)/(1 - 2*x^(2*k)) - mu(2*k)*x^(2*k)*(1 + x^(2*k))/(1 - 2*x^(4*k)). - Andrew Howroyd, Sep 27 2019
Extensions
a(17)-a(45) from Andrew Howroyd, Apr 08 2017
a(0)=1 prepended by Andrew Howroyd, Sep 27 2019
Comments