A056538 Irregular triangle read by rows: row n lists the divisors of n in decreasing order.
1, 2, 1, 3, 1, 4, 2, 1, 5, 1, 6, 3, 2, 1, 7, 1, 8, 4, 2, 1, 9, 3, 1, 10, 5, 2, 1, 11, 1, 12, 6, 4, 3, 2, 1, 13, 1, 14, 7, 2, 1, 15, 5, 3, 1, 16, 8, 4, 2, 1, 17, 1, 18, 9, 6, 3, 2, 1, 19, 1, 20, 10, 5, 4, 2, 1, 21, 7, 3, 1, 22, 11, 2, 1, 23, 1, 24, 12, 8, 6, 4, 3, 2, 1, 25, 5, 1, 26, 13, 2, 1, 27, 9
Offset: 1
Examples
Triangle begins: 1; 2, 1; 3, 1; 4, 2, 1; 5, 1; 6, 3, 2, 1; 7, 1; 8, 4, 2, 1; 9, 3, 1; 10, 5, 2, 1; 11, 1; 12, 6, 4, 3, 2, 1; 13, 1; 14, 7, 2, 1; 15, 5, 3, 1; 16, 8, 4, 2, 1; 17, 1; 18, 9, 6, 3, 2, 1; 19, 1; 20, 10, 5, 4, 2, 1;
Links
- Reinhard Zumkeller, Rows n = 1..1000 of triangle, flattened
- Omar E. Pol, Illustration of the divisors of n - _Omar E. Pol_, Nov 22 2009
Crossrefs
Programs
-
Haskell
a056538 n k = a056538_tabf !! (n-1) !! (k-1) a056538_row n = a056538_tabf !! (n-1) a056538_tabf = map reverse a027750_tabf -- Reinhard Zumkeller, Sep 28 2014
-
Magma
[Reverse(Divisors(n)) : n in [1..30]];
-
Maple
map(op,[seq(reverse(sort(divisors(j))),j=1..30)]); cdr := proc(l) if 0 = nops(l) then ([]) else (l[2..nops(l)]): fi: end: reverse := proc(l) if 0 = nops(l) then ([]) else [op(reverse(cdr(l))), l[1]]; fi: end:
-
Mathematica
Table[Reverse@ Divisors@ n, {n, 27}] // Flatten (* Michael De Vlieger, Jul 27 2016 *)
-
PARI
row(n)=Vecrev(divisors(n)) \\ Charles R Greathouse IV, Sep 02 2015
Extensions
Definition revised by N. J. A. Sloane, Jul 27 2016
Comments